首页> 美国政府科技报告 >Performance of traffic-alert collision avoidance (TCAS) antennas in the presence of scatterers
【24h】

Performance of traffic-alert collision avoidance (TCAS) antennas in the presence of scatterers

机译:存在散射体时的交通警报防撞(TCas)天线的性能

获取原文

摘要

The performance of two TCAS systems is studied in the presence of electromagnetic scatterers. TCAS is an aircraft mounted angle of arrival (AOA) system, which estimates the bearing of a signal transmitted from a mode-S transponder on another nearby aircraft (intruder). Two systems are studied: (1) Comparison of Relative Amplitude system (CRA), and (2) Spiral Phase Antenna (SPA). The CRA antenna receives the reply via four switched beams. The bearing is estimated by comparing the amplitudes of the received signal. The SPA is based on the phase interferometer, which utilizes the received phase via sum and difference beams. The AOA is computed by comparing the reply with similar values on a calibration table, which is generated by modeling the TCAS antenna on the bare fuselage of a Boeing 727-200. The antenna patterns for the TCAS are found via high frequency methods based on the Uniform Geometric theory of Diffraction (UTD). By minimizing the standard deviation of the bearing error in a specified angular sector, optimal locations for top and bottom mounted TCAS antennas are found on the Boeing 727-200, 737-300 and 747-200 airframes. It will be shown that the overall bearing errors of the amplitude system are consistently smaller than the spiral phase TCAS. The effect of two types of nearby scatterers--antennas, and engine inlets--is studied. The AT741 L-band blade, DMC60-1 VHF Communication antenna were chosen as being representative antenna interference examples. Models are derived for the blades via a moment method analysis followed by a least squares procedure to synthesize the scattering patterns. Studies were conducted to estimate the minimum separation between the two antennas for acceptable operation. It will be shown that the spiral phase TCAS is adversely affected by the presence of a blade antenna. The amplitude system does not suffer from this limitation, especially for the forward look angles which are of most interest here. A model to represent the inlet scattering is based on the multiple scattering method and UTD. The engine on top of the B727-200 fuselage is modeled by a terminated circular waveguide. Then, the effect of moving the antenna forward on the fuselage is studied. It is again shown that the performance of the amplitude system is superior.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号