首页> 美国政府科技报告 >Manual control in space research on perceptual-motor functions under zero gravity conditions (L-10)
【24h】

Manual control in space research on perceptual-motor functions under zero gravity conditions (L-10)

机译:在零重力条件下对感知 - 运动功能的空间研究中的手动控制(L-10)

获取原文

摘要

Are human abilities to control vehicles and other machines the same in space as those on Earth The L-10 Manual Control Experiment of the First Materials Processing Tests (FMPT) started from this question. Suppose a pilot has the task to align the head of a space vehicle toward a target. His actions are to look at the target, to determine the vehicle movement, and to operate the manipulator. If the activity of the nervous system were the same as on Earth, the movements, of the eye and hand would become excessive because the muscles do not have to oppose gravity. The timing and amount of movement must be arranged for appropriate actions. The sensation of motion would also be affected by the loss of gravity because the mechanism of the otolith, the major acceleration sensor, depends on gravity. The possible instability of the sensation of direction may cause mistakes in the direction of control of manipulator movement. Thus, the experimental data can be used for designing man-machine systems in space, as well as for investigation of physiological mechanisms. In this experiment, the direction of vehicle heading is expressed by a light spot on an array of light emitting diodes and the manipulator is of a finger stick type. As the light spot moves up and down, the Japanese Payload Specialist, and the subject, must move the manipulator forward and backward to keep the movement of the light spot within the neighborhood of the central point of the display. The position of the light spot is computed in such a manner that when the stick is kept at the neutral position, a motion whose acceleration is proportional to the angle of deflection is added to the movement of the light spot. The Operator Describing Function, which is an expression of human control characteristics, can be calculated from 2 minutes of raw data of the light spot position and stick deflection. The 2 minutes of operation is called a run, and 8 runs with resting periods composes a session. The on-orbit experiment will be conducted on the second, fourth, and seventh days. One session of experiment of each of these days is conducted following the L-4 experiment, which uses the same apparatus. The Payload Specialist, aided by a Mission Specialist, will take our apparatus from a rack container, set up the apparatus, attach electrodes for measurements of eye movement and muscle activity, conduct the L-4 Visual Stability Experiment, conduct one session of the manual control experiment, and then dissemble and stow the apparatus. In addition to the flight experiment, pre-flight and post-flight experiments will be conducted. The data of three sessions on orbit will reflect adaption of physiological systems to microgravity. The data of post-flight experiments, on the other hand, will reflect re-adaptation of physiological systems to the gravity condition on the ground. Control data collected with and without psychological tension will be scheduled just prior to and long before launch.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号