首页> 美国政府科技报告 >Experimental and Numerical Characterization of a Steady-State Cylindrical Blackbody Cavity at 1100 Degrees Celsius
【24h】

Experimental and Numerical Characterization of a Steady-State Cylindrical Blackbody Cavity at 1100 Degrees Celsius

机译:1100摄氏度稳态圆柱黑体腔的实验与数值表征

获取原文

摘要

A blackbody calibration furnace at the NASA Dryden Flight Research Center is used to calibrate heat flux gages. These gages are for measuring the aerodynamic heat flux on hypersonic flight vehicle surfaces. The blackbody is a graphite tube with a midplane partition which divides the tube into two compartments (dual cavities). Electrical resistance heating is used to heat the graphite tube. This heating and the boundary conditions imposed on the graphite tube result in temperature gradients along the walls of the blackbody cavity. This paper describes measurements made during steady-state operation and development of finite-difference thermal models of the blockbody furnace at 1100 C. Two configurations were studied, one with the blackbody outer surface insulated and the other without insulation. The dominant modes of heat transfer were identified for each configuration and the effect of variations in material properties and electric current that was passed through the blackbody were quantified.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号