首页> 美国政府科技报告 >Adaptive Nulling: A New Enabling Technology for Interferometric Exoplanet
【24h】

Adaptive Nulling: A New Enabling Technology for Interferometric Exoplanet

机译:自适应无效:一种新的干涉太阳系外行技术

获取原文

摘要

Deep, stable nulling of starlight requires careful control of the amplitudes and phases of the beams that are being combined. The detection of earth-like planets using the interferometer architectures currently being considered for the Terrestrial Planet Finder mission require that the E-field amplitudes are balanced at the level of approx. 0.1, and the phases are controlled at the level of 1 mrad (corresponding to approx.1.5 nm for a wavelength of 10 microns). These conditions must be met simultaneously at all wavelengths across the science band, and for both polarization states, imposing unrealistic tolerances on the symmetry between the optical beamtrains. We introduce the concept of a compensator that is inserted into the beamtrain, which can adaptively correct for the mismatches across the spectrum, enabling deep nulls with realistic, imperfect optics. The design presented uses a deformable mirror to adjust the amplitude and phase of each beam as an arbitrary function of wavelength and polarization. A proof-of-concept experiment will be conducted at visible/near-IR wavelengths, followed by a system operating in the Mid-IR band.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号