首页> 美国政府科技报告 >Approximate techniques for predicting size effects on cleavage fracture toughness (J{sub c})
【24h】

Approximate techniques for predicting size effects on cleavage fracture toughness (J{sub c})

机译:预测尺寸对解理断裂韧性影响的近似技术(J {sub c})

获取原文

摘要

This investigation examines the ability of an elastic T-stress analysis coupled with modified boundary layer (MBL) solution to predict stresses ahead of a crack tip in a variety of planar geometries. The approximate stresses are used as input to estimate the effective driving force for cleavage fracture (J{sub 0}) using the micromechanically based approach introduced by Dodds and Anderson. Finite element analyses for a wide variety of planar cracked geometries are conducted which have elastic biaxiality parameters ({beta}) ranging from {minus}0.99 (very low constraint) to +2.96 (very high constraint). The magnitude and sign of {beta} indicate the rate at which crack-tip constraint changes with increasing applied load. All results pertain to a moderately strain hardening material (strain hardening exponent ({eta}) of 10). These analyses suggest that {beta} is an effective indicator of both the accuracy of T-MBL estimates of J{sub 0} and of applicability limits on evolving fracture analysis methodologies (i.e. T-MBL, J-Q, and J/J{sub 0}). Specifically, when 1{beta}1>0.4 these analyses show that the T-MBL approximation of J{sub 0} is accurate to within 20% of a detailed finite-element analysis. As ``structural type`` configurations, i.e. shallow cracks in tension, generally have 1{beta}1>0.4, it appears that only an elastic analysis may be needed to determine reasonably accurate J{sub 0} values for structural conditions.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号