首页> 美国政府科技报告 >Evolution of the Far-Infrared Cloud at Titan's South Pole.
【24h】

Evolution of the Far-Infrared Cloud at Titan's South Pole.

机译:泰坦南极远红外云的演变。

获取原文

摘要

A condensate cloud on Titan identified by its 220 cm (sup -1) far-infrared signature continues to undergo seasonal changes at both the north and south poles. In the north the cloud, which extends from 55 North to the pole, has been gradually decreasing in emission intensity since the beginning of the Cassini mission with a half-life of 3.8 years. The cloud in the south did not appear until 2012 but its intensity has increased rapidly, doubling every year. The shape of the cloud at the South Pole is very different from that in the north. Mapping in December 2013 showed that the condensate emission was confined to a ring with a maximum at 80 South. The ring was centered 4 degrees from Titan's pole. The pattern of emission from stratospheric trace gases like nitriles and complex hydrocarbons (mapped in January 2014) was also offset by 4 degrees, but had a central peak at the pole and a secondary maximum in a ring at about 70 South with a minimum at 80 South. The shape of the gas emissions distribution can be explained by abundances that are high at the atmospheric pole and diminish toward the equator, combined with correspondingly increasing temperatures. We discuss possible causes for the condensate ring. The present rapid build up of the condensate cloud at the South Pole is likely to transition to a gradual decline during 2015-16.

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号