首页> 美国政府科技报告 >Failure Modes in Capacitors When Tested Under a Time-Varying Stress
【24h】

Failure Modes in Capacitors When Tested Under a Time-Varying Stress

机译:电容器中的失效模式在时变应力下进行测试

获取原文

摘要

Power-on failure has been the prevalent failure mechanism for solid tantalum capacitors in decoupling applications. A surge step stress test (SSST) has been previously applied to identify the critical stress level of a capacitor batch to give some predictability to the power-on failure mechanism (1). But SSST can also be viewed as an electrically destructive test under a time-varying stress (voltage). It consists of rapidly charging the capacitor with incremental voltage increases, through a low resistance in series, until the capacitor under test is electrically shorted. When the reliability of capacitors is evaluated, a highly accelerated life test (HALT) is usually adopted since it is a time-efficient method of determining the failure mechanism; however, a destructive test under a time-varying stress such as SSST is even more time efficient. It usually takes days or weeks to complete a HALT test, but it only takes minutes for a time-varying stress test to produce failures. The advantage of incorporating a specific time-varying stress profile into a statistical model is significant in providing an alternative life test method for quickly revealing the failure mechanism in capacitors. In this paper, a time-varying stress that mimics a typical SSST has been incorporated into the Weibull model to characterize the failure mechanism in different types of capacitors. The SSST circuit and transient conditions for correctly surge testing capacitors are discussed. Finally, the SSST was applied for testing Ta capacitors, polymer aluminum capacitors (PA capacitors), and multi-layer ceramic (MLC) capacitors with both precious metal electrodes (PME) and base metal electrodes (BME). The test results are found to be directly associated with the dielectric layer breakdown in Ta and PA capacitors and are independent of the capacitor values, the way the capacitors were built, and the capacitors manufacturers. The test results also show that MLC capacitors exhibit surge breakdown voltages much higher than the rated voltage and that the breakdown field is inversely proportional to the dielectric layer thickness. The SSST data can also be used to comparatively evaluate the voltage robustness of capacitors for decoupling applications.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号