首页> 美国政府科技报告 >Final Report for the ZERT Project: Basic Science of Retention Issue, Risk Assessment and Measurement, Monitoring and Verification for Geologic Sequestration
【24h】

Final Report for the ZERT Project: Basic Science of Retention Issue, Risk Assessment and Measurement, Monitoring and Verification for Geologic Sequestration

机译:ZERT项目的最终报告:保留问题的基础科学,风险评估和测量,地质封存的监测和验证

获取原文

摘要

The Zero Emissions Research and Technology (ZERT) collaborative was formed to address basic science and engineering knowledge gaps relevant to geologic carbon sequestration. Many of the research activities fall between areas normally funded by different directorates at DOE and might be considered too applied for the basic science directorate and too basic in nature for other directorates. An executive committee comprised of institutional leads (and leaders in the field of carbon sequestration) met annually and talked via a monthly scheduled conference call to identify research gaps and research strengths among the ZERT institutions. The executive committee established the following major objectives: (1) Improve computational tools for simulation of CO(sub 2) behavior in the subsurface. This includes adding reactive transport, development of coupled models to include geomechanics, inclusion of hysteretic effects, parallelization, etc. (2) Test efficacy of near-surface detection techniques, help establish detection limits for those techniques, and provide data to assist in development of transport models in the near-surface region. Development of a field site to help accomplish this objective. (3) Develop a comprehensive risk assessment framework that will allow flexible coupling of multiple computational models for different components/processes of the system. (4) Perform gap analysis to determine critical missing data for CO(sub 2) properties in the subsurface including thermodynamic properties of CO(sub 2) - brine mixtures, reaction rates, relative permeabilities, etc. In addition, perform laboratory based experiments to generate that key data. (5) Investigate innovative leakage mitigation strategies. Many of these efforts were multi-institutional. Computational code improvement was undertaken by LBNL, LLANL, PNNL, and NETL, all ZERT institutions participated in the near-surface detection experiments, the systems level risk modeling was lead by LANL, but built to incorporate process level models developed by other ZERT institutions and utilizes information from ZERT investigations of natural analogs for escape mechanisms, and all institutions measured properties of CO2 - brine and/or rock interactions.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号