首页> 美国政府科技报告 >Physics of coal liquid slurry atomization. Final report to Department of Energy - PETC
【24h】

Physics of coal liquid slurry atomization. Final report to Department of Energy - PETC

机译:煤液浆雾化物理。最终报告给能源部 - pETC

获取原文

摘要

The stability of turbulent columns of liquid injected into a quiescent environment was studied. Laser Doppler Anemometry measurements of the flow patterns and turbulence characteristics in free liquid jets were made. Turbulence decay along Newtonian jets was investigated along with the effects of turbulence on the resulting droplet size distributions after breakup. The rate of decay of turbulence properties along the jet were investigated. Disintegration of liquid jets injected into a high-velocity gas stream has also been studied. Newtonian and non-Newtonian liquids were studied with particular emphasis on the non-Newtonian rheological characteristics. Determination was made of the extent that the addition of high molecular weight polymer to liquids change the breakup process. Shear thinning, extension thinning and extension thickening fluids were investigated. Shear viscosities were measured over five decades of shear rates. The contraction flow technique was also used for measurement of the extensional viscosity of non-Newtonian liquids. The die-swell technique was also used to determine the first normal stress difference. The near field produced by a co-axial airblast atomizer was investigated using the phase Doppler particle analyzer. Whether or not the classical wave mechanism and empirical models reported for airblast atomization of low viscosity liquid are applicable to airblast atomization of viscous non-Newtonian liquids was determined. The theoretical basis of several models which give the best fit to the experimental data for airblast atomization of non-Newtonian liquids was also discussed. The accuracy of the wave mechanism-based models in predicting droplets sizes after breakup of viscous non-Newtonian liquids using an airblast atomizer has also been demonstrated.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号