首页> 美国政府科技报告 >Effect of air infiltration on the thermal performance of a small metal-framed assembly
【24h】

Effect of air infiltration on the thermal performance of a small metal-framed assembly

机译:空气渗透对小型金属框架组件热性能的影响

获取原文

摘要

Innovative construction materials and systems have generated a need for laboratory scale tests to quantify the effect of air leakage on thermal and moisture performance of building assemblies. Some construction materials and systems are inherently more air tight than others. It is desirable to do laboratory scale measurements on alternative systems so as to rank them with respect to air tightness just as they can be ranked with respect to system R-value. Participants in summer 1995 and 1996 workshops for elementary and secondary school science teachers in the Buildings Technology Center (BTC) at the Oak Ridge National Laboratory sought a way to illustrate basic principles of building science in the classroom. They decided to build a small metal-framed assembly with internal volume of 44 ft(sup 3) (1.25 m(sup 3)) and removable wall sheathing. The assembly included a door and window. Although the door and window were made from 4-in. (10.2-cm) thick foam insulation, the requisite framing for them detracted from the thermal performance of the walls and occupied a disproportionately large fraction of the wall area. The floor and roof of the assembly were also well-insulated so that the walls dominated the conduction heat loss through the assembly. The plan was to test thermal performance of the assembly with the sheathing and without it. Thereby the teachers hoped to show the effects of thermal bridges with metal framing as well as practical yet insightful way to reduce their effects.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号