首页> 美国政府科技报告 >Atmospheric tests of trailing-edge aerodynamic devices
【24h】

Atmospheric tests of trailing-edge aerodynamic devices

机译:后缘空气动力装置的大气试验

获取原文

摘要

An experiment was conducted at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) using an instrumented horizontal-axis wind turbine that incorporated variable-span, trailing-edge aerodynamic brakes. The goal of the investigation was to directly compare results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were used to define effective changes in the aerodynamic and hinge-moment coefficients, as a function of angle of attack and control deflection, for three device spans (7.5%, 15%, and 22.5%) and configurations (Spoiler-Flap, vented sileron, and unvented aileron). Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (about a 30% reduction from infinite-span) for 15% or larger span devices. Interestingly, aerodynamic controls with vents or openings appear most affected by span reductions and three-dimensional flow.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号