首页> 美国政府科技报告 >Analytical performance of direct-hydrogen-fueled polymer electrolyte fuel cell (PEFC) systems for transportation applications.
【24h】

Analytical performance of direct-hydrogen-fueled polymer electrolyte fuel cell (PEFC) systems for transportation applications.

机译:用于运输应用的直接氢燃料聚合物电解质燃料电池(pEFC)系统的分析性能。

获取原文

摘要

The performance of a stand-alone polymer electrolyte fuel cell (PEFC) system directly fueled by hydrogen has been evaluated for transportation vehicles. The study was carried out using a systems analysis code and a vehicle analysis code. The systems code includes models for the various PEFC components and is applicable for steady-state and transient situations. At the design point the system efficiency is above 50% for a 50-kW system. The efficiency improves under partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the V-I polarization curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and eventually the fuel cell. The system performance suffers at lower temperatures, as the V-I characteristic curve for the fuel cell shifts downward because of the increased ohmic losses. The results of the transient analysis indicate that the hydrogen-fueled PEFC system can start rather rapidly, within seconds from ambient conditions. However, the warm-up time constant to reach the design operating temperatures is about 180 s. It is important during this period for the coolant to bypass the system radiator until the coolant temperature approaches the design temperature for the fuel cell. The systems analysis code has been applied to two mid-size vehicles: the near-term Ford AIV Sable and the future P2000 vehicle. The results of this study show that the PEFC system in these vehicles can respond well to the demands of the FUDS and Highway driving cycles, with both warm and cold starting conditions. The results also show that the fuel-cell AIV Sable vehicle has impressive gains in fuel economy over that of the internal combustion engine vehicle. However, this vehicle will not be able to meet the PNGV goal of 80 mpg. On the other hand, the P2000 vehicle approaches this goal with variable efficiency of the compressor and expander. It is expected to exceed that goal by a big margin, if the efficiency of the compressor and expander can be maintained constant (at 0.8) over the power range of the fuel cell system.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号