首页> 美国政府科技报告 >Cr Redox Record of fO2 Variation in Angrites. Evidence for Redox Conditions of Angrite Petrogenesis and Parent Body.
【24h】

Cr Redox Record of fO2 Variation in Angrites. Evidence for Redox Conditions of Angrite Petrogenesis and Parent Body.

机译:角质层中fO2变化的Cr氧化还原记录。 angrite petrogenesis和parent Body的氧化还原条件的证据。

获取原文

摘要

Angrites represent some of the earliest stages of planetesimal differentiation. Not surprisingly, there is no simple petrogenetic model for their origin. Petrogenesis has been linked to both magmatic and impact processes. Studies demonstrated that melting of chondritic material (e.g. CM, CV) at redox conditions where pure iron metal is unstable (e.g., IW+1 to IW+2) produced angrite-like melts. Alternatively, angrites were produced at more reducing conditions (<IW) with their exotic melt compositions resulting from carbonates in the source or from nebular condensation. Clearly, understanding what role fO2 plays in producing angrite magmas is critical for deciphering their petrogenesis and extending our understanding of primordial melting of asteroids. Calculations for the fO2 conditions of angrite crystallization are limited, and only preliminary attempts been made to understand the changes in fO2 that occurred during petrogenesis. Many of the angrites have phase assemblages which provide conflicting signals about redox conditions during crystallization (e.g., Fe metal and a Fe-Ti oxide with potential Fe3+. There have been several estimates of fO2 for angrites. Most notably, experiments examined the variation of DEu/DGd with fO2, between plagioclase and fassaitic pyroxene in equilibrium with an angrite melt composition. They used their observations to estimate the fO2 of crystallization to be approximately IW+0.6 for angrite LEW 86010. This estimate is only a "snapshot" of fO2 conditions during co-crystallization of plagioclase and pyroxene. Preliminary XANES analyses of V redox state in pyroxenes from D'Orbigny reported changes in fO2 from IW-0.7 during early pyroxene crystallization to IW+0.5 during latter episodes of pyroxene crystallization [15]. As this was a preliminary report, it presented limited information concerning the effects of pyroxene orientation and composition on the V valence measurements, and the effect of melt composition on valence and partitioning behavior of V. A closer examination of fO2 as recorded by Cr valence state in olivine will allow us to test models for primordial melting of chondritic material to produce the angrite parent melts. Here, we report the our initial stages of examining the origin and conditions of primordial melting on the angrite parent body and test some of the above models by integrating an experimental study of Cr and V valence partitioning between olivine [OL] and an angrite melt, with micro-scale determinations of Cr and V oxidation state in OL in selected "volcanic" angrites.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号