首页> 美国政府科技报告 >Experimental and Modeling Studies of Water-Silica-PDMS Interactions in M97-Based Stress Cushions
【24h】

Experimental and Modeling Studies of Water-Silica-PDMS Interactions in M97-Based Stress Cushions

机译:基于m97的应力缓冲垫中水 - 二氧化硅-pDms相互作用的实验和建模研究

获取原文

摘要

In filled PDMS based composites, such as M97XX stress cushions, significant mechanical reinforcement of the polymer component is obtained from hydrogen bonding between the silica filler surface hydroxyls and the siloxane polymer backbone. It is expected that these interactions are influenced by the amount and structure of interfacial water. We have chosen to investigate in detail the effect of chemisorbed and physisorbed water on the interfacial structure and dynamics in silica-filled PDMS-based composites. Toward this end, we have combined classical molecular dynamics simulations and experimental studies employing nanoindentation, temperature programmed desorption (TPD), Dynamic Mechanical Analysis (DMA), and Nuclear Magnetic Resonance (NMR) analyses. Our TPD results suggest that moisture desorption and adsorption in M9787 can be approximated by the interaction of its silica constituents (Cab-0-Sil-M-7D and Hi-Sil-233) with moisture. Our experimental data also reveal that, in general, as heat-treated silica particles are exposed to moisture, chemisorbed states, then physisorbed states are gradually filled up in that order.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号