首页> 美国政府科技报告 >Meteorological and air quality impacts of increased urban albedo and vegetative cover in the Greater Toronto Area, Canada
【24h】

Meteorological and air quality impacts of increased urban albedo and vegetative cover in the Greater Toronto Area, Canada

机译:加拿大大多伦多地区城市反照率和植被覆盖增加对气象和空气质量的影响

获取原文

摘要

The study described in this report is part of a project sponsored by the Toronto Atmospheric Fund, performed at the Lawrence Berkeley National Laboratory, to assess the potential role of surface property modifications on energy, meteorology, and air quality in the Greater Toronto Area (GTA), Canada. Numerical models were used to establish the possible meteorological and ozone air-quality impacts of increased urban albedo and vegetative fraction, i.e., 'cool-city' strategies that can mitigate the urban heat island (UHI), significantly reduce urban energy consumption, and improve thermal comfort, particularly during periods of hot weather in summer. Mitigation is even more important during critical heat wave periods with possible increased heat-related hospitalization and mortality. The evidence suggests that on an annual basis cool-city strategies are beneficial, and the implementation of such measures is currently being investigated in the U.S. and Canada. We simulated possible scenarios for urban heat-island mitigation in the GTA and investigated consequent meteorological changes, and also performed limited air-quality analysis to assess related impacts. The study was based on a combination of mesoscale meteorological modeling, Lagrangian (trajectory), and photochemical trajectory modeling to assess the potential meteorological and ozone air-quality impacts of cool-city strategies. As available air-quality and emissions data are incompatible with models currently in use at LBNL, our air-quality analysis was based on photochemical trajectory modeling. Because of questions as to the accuracy and appropriateness of this approach, in our opinion this aspect of the study can be improved in the future, and the air-quality results discussed in this report should be viewed as relatively qualitative. The MM5 meteorological model predicts a UHI in the order of 2 to 3 degrees C in locations of maxima, and about 1 degree C as a typical value over most of the urban area. Our simulations suggest that cool-city strategies can typically reduce local urban air temperature by 0.5-1 degrees C; as more sporadic events, larger decreases (1.5 degrees C, 2.5-2.7 degrees C and 4-6 degrees C) were also simulated. With regard to ozone mixing ratios along the simulated trajectories, the effects of cool-city strategies appear to be on the order of 2 ppb, a typical decrease.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号