首页> 美国政府科技报告 >Test Report on ISR Double-Loop, Spray-Cooled Inverter
【24h】

Test Report on ISR Double-Loop, Spray-Cooled Inverter

机译:IsR双回路,喷雾冷却逆变器测试报告

获取原文

摘要

The Isothermal Systems Research, Inc. (ISR) double-loop, two-phase spray cooling system was designed to use 85 C transmission oil to cool a heat exchanger via a second cooling loop. The heat exchanger condenses the working fluid vapor back to liquid inside a sealed enclosure to allow for continuous spray cooling of electronics. In the ORNL tests, 85 C water/ethylene/glycol (WEG), which has better thermal properties than transmission oil, was substituted for the transmission oil. Because the ISR spray-cooling system requires a second cooling loop, the final inverter might be inherently larger than inverters that do not require a second-loop cooling system. The ISR test setup did not include a dc bus capacitor. Because the insulated gate bipolar transistor (IGBT) conduction test indicated that the ISR test setup could not be properly loaded thermally, no switching tests were conducted. Therefore it was not necessary to attach external capacitors outside the test setup. During load situations not exceeding 400A, the WEG inlet temperature was higher than the WEG outlet temperature. This meant that the 85 C WEG heat exchanger was not cooling the inverter and became a thermal load to the inverter. Only when the load was higher than 400A with a higher coolant temperature and the release valve actuated did the WEG heat exchanger start to cool the 2-phase coolant. The inverter relied strongly on the cooling of the huge aluminum enclosure located inside the ventilation chamber. In a hybrid vehicle, the inverter is situated under the hood, where the dependency on cooling provided by the enclosure may become a problem.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号