首页> 美国政府科技报告 >Simulations of Intense Relativistic Electron Beam Generation by Foilless Diodes
【24h】

Simulations of Intense Relativistic Electron Beam Generation by Foilless Diodes

机译:无箔二极管产生强相对论电子束的模拟

获取原文

摘要

Foilless diodes used to produce intense annular relativistic electron beams have been simulated using the time-dependent, two-dimensional particle-in-cell code CCUBE. Current densities exceeding 200 kA/cm exp 2 have been obtained in the simulations for a 5 MeV, 35 omega diode. Many applications, including microwave generation, collective ion acceleration and high-density plasma heating require a laminar electron flow in the beams. The simulation results indicate that foilless diodes immersed in a strong external magnetic field can achieve such a flow. Diodes using technologically achievable magnetic field strengths (approx. 100 kG) and proper electrode shaping appear to be able to produce beams with an angular scatter of less than 35 mrad at the current densities and energies mentioned above. Scaling of the impedance and temperature of the beam as a function of geometry, magnetic field strength and voltage is presented. (ERA citation 04:047294)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号