首页> 美国政府科技报告 >Geochemical Gradients in the Topopah Spring Member of the Paintbrush Tuff: Evidence for Eruption Across a Magmatic Interface
【24h】

Geochemical Gradients in the Topopah Spring Member of the Paintbrush Tuff: Evidence for Eruption Across a Magmatic Interface

机译:Topopah地质化学梯度在画笔凝灰岩的春天成员:跨magmatic界面喷发的证据

获取原文

摘要

The Topopah Spring Member of the Paintbrush Tuff in southern Nevada is a classic example of a compositionally zoned ash-flow sheet that is inferred to have resulted from eruption of a compositionally zoned magma body. Geochemical and petrographic analyses of whole-rock tuff samples indicate that the base of the ash-flow sheet and the dominant volume of erupted material are composed of crystal-poor high-silica rhyolite, with a gradational transition into overlying crystal-rich quartz latite at the top of the sequence. These compositional variations are consistent with a model of progressive eruption of a stratified magma body in which relatively cooler, crystal-poor high-silica rhyolitic magma overlay hotter, crystal-rich quartz latitic magma. Major and trace element chemical analyses of whole glassy pumices and analyses of coexisting ilmenite and magnetite phenocrysts from within the pumices provide closer approximations to the chemical and thermal gradients within the inferred magma body. The magmatic gradients inferred from these data indicate that the transition from high-silica rhyolitic to quartz latitic magma within the chamber was abrupt rather than gradational, with a distinct liquid-liquid interface separating the two contrasting magmas. Throughout the ash-flow sheet, individual pumice lumps with distinct and variable textural characteristics are present within outcrop, hand-sample, and thin-section scale. Within the lower portion of the ash-flow sheet, the individual pumices are all high-silica rhyolites with relatively small variations in trace-element composition and estimated quench temperatures, and thus are chemically similar to their associated whole-rock tuff composites. In contrast, the chemical variability among pumices within the uppermost quartz latite is as great as that of the entire ash-flow sheet. (ERA citation 12:032050)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号