首页> 美国政府科技报告 >''Hot Spots'': Subnanometer Femtosecond Energy Localization
【24h】

''Hot Spots'': Subnanometer Femtosecond Energy Localization

机译:''热点'':亚纳米级飞秒能量定位

获取原文

摘要

In a condensed energetic material, an understanding of the dynamics and microscopic mechanisms underlying energy transfer between a shock front and various defects is of prime importance for a realistic description of ''hot spot'' formation and explosives initiation. A wide variety of simulations using the well-established technique of computer molecular dynamics has enabled us to obtain a general and very useful microscopic description of the processes beneath the macroscopic behavior of shocked systems. The calculation of the influence of heterogeneities such as point and line defects, voids, and grain boundaries is made possible by computer codes that can handle totally heterogeneous dynamical systems and track the dynamics of energy concentration and partitioning among the molecular bonds in the defect and the nearby region. One and two-dimensional calculations will be discussed in which the spatial and temporal dependence of the energy flux in a general lattice-defect system is calculated quantitatively as a function of shock strength, initial temperature, and initial parameters defining the lattice and defect. (ERA citation 12:046780)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号