首页> 美国政府科技报告 >Particle-Dynamics Calculations of Gravity Flow of Inelastic, Frictional Spheres
【24h】

Particle-Dynamics Calculations of Gravity Flow of Inelastic, Frictional Spheres

机译:非弹性摩擦球重力流的粒子动力学计算

获取原文

摘要

Three-dimensional discrete-particle computer models that calculate the motion of each individual grain in assemblies of hundreds of particles in steady shearing flows with either periodic or real boundaries have been modified to simulate gravity flow of particles through arrays of cylindrical horizontal rods and down inclined chutes. The particle interaction models reproduce experimentally measured recoil trajectories for colliding frictional particles, including rotation effects. Laboratory measurements of the flow of glass beads cascading down through an array of horizontal cylindrical rods correlate well with gravity flow calculations of inelastic, frictional spheres falling through a similar rod array. Less elastic particles are found to cascade through the array faster than nearly elastic particles. Likewise, smaller particles are found to flow faster than large ones. Model simulations of nearly two-dimensional inclined chute flow tests of 6mm diameter cellulose-acetate spheres flowing over a rough surface between parallel vertical glass plates, result in particle velocities that are considerably higher than values measured in similar laboratory tests at UCLA; however, inclusion of approximate air drag effects in the calculational model eliminates most of the discrepancy producing both density and velocity profiles that are close to the measured values. 15 refs., 5 figs. (ERA citation 13:020001)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号