首页> 美国政府科技报告 >Computational Modeling of Multi-Scale Material Features in Cement Paste - An Overview.
【24h】

Computational Modeling of Multi-Scale Material Features in Cement Paste - An Overview.

机译:水泥浆体中多尺度材料特征的计算模型 - 概述。

获取原文

摘要

Computational modeling of complex, heterogeneous, multi-scale features of cement paste requires starting from their fundamental building blocks that includes material chemistry, microstructural morphology. This would enable capturing scale relevant features that influence the properties and behavior of materials through associated computational, material and mechanistic models. Such modeling starting from nanoscale material features through material chemistry modeling via molecular dynamics (MD); modeling of complete three-dimensional virtual microstructure including the evolution of microstructure due to hydration of cementitious materials are briefly highlighted. Material chemistry modeling discussions from our recent work on nanoscale shear deformation to obtain the stress-strain behavior solely based on the material chemistry structure of hydrated cementitious material constituent CSH Jennite is summarized. Micro-scale modeling involving finite element based repeated volume element (RVE) modeling applied to the virtual three-dimensional complex microstructures at different degrees of hydration of the cement paste is also summarized. Complete details are presented in our other current and future publications in the literature. Multi-scale modeling that links across various length scales and material features in complex heterogeneous material systems provides an effective way of coupling material science and engineer-ing features for their better understanding and tailored material design. These approaches present a new future direction for integrated material science and engineering of materials and structures.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号