首页> 美国政府科技报告 >Interior Elastic Stress Field in a Continuous, Close-Packed Filamentary Composite Material under Uniaxial Tension
【24h】

Interior Elastic Stress Field in a Continuous, Close-Packed Filamentary Composite Material under Uniaxial Tension

机译:单轴拉伸下连续紧密填充复合材料的内弹性应力场

获取原文

摘要

Using symmetry arguments, boundary conditions are established which must hold on the lines of symmetry between neighboring filaments in an oriented filamentary composite. These conditions serve to set the problem as a special case of the mixed boundary problem of elasticity. The composite is assumed to deform such that the normal strains in the director of the filament axes are the same in both media. The equations of elasticity are then solved in polar coordinates so that the solution has the appropriate sixfold symmetry. Because boundary and continuity conditions must be described on both a straight and circular boundary, the solution is not in closed form. The in-plane stresses vanish when the Poisson's ratios of the two media are identical. Three harmonics were used to describe the stress field, which required that fifteen constants be evaluated from the boundary and continuity conditions. Fifteen equations, which depend on the elastic constants of both media and the separation between filaments were obtained from the continuity conditions at the circular interface between the two media and boundary conditions along the lines of symmetry between neighboring filaments. These equations were solved for an epoxy-fiber glass and a silver-steel composite for a variety of filament spacings. The in-plane stresses are vanishingly small for the epoxy-fiber glass composite. For the silver-steel composite, the in-plane stresses reach about 3 per cent of the average axial stress. (Author)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号