首页> 美国政府科技报告 >I-664 Bridge-Tunnel Study, Virginia. Sedimentation and Circulation Investigation
【24h】

I-664 Bridge-Tunnel Study, Virginia. Sedimentation and Circulation Investigation

机译:I-664桥梁隧道研究,弗吉尼亚州。沉积和循环调查

获取原文

摘要

This report presents results from physical and numerical model tests on the effects of the proposed I-664 James River Bridge-Tunnel complex on (a) sedimentation in the federally maintained channels (Newport News, Norfolk Harbor, and Elizabeth River); (b) general sedimentation in the lower James River; (c) changes in overall flushing characteristics; and (d) changes in current velocities and flushing near the Craney Island disposal site. The navigation channel sedimentation was evaluated using the TABS-2 finite element numerical models RMA-2V for hydrodynamics and STUDH for sedimentation with an existing numerical mesh of the Elizabeth River and lower James River areas. For the general sedimentation investigation, a new numerical mesh was created and the same numerical models, RMA-2V and STUDH, were used. Data for the flushing and currents evaluation were provided by the Virginia Institute of Marine Science. Results from the physical model tests indicate circulation changes will be localized with minimal effects on the general circulation of the lower James River. Results from the numerical sedimentation modeling indicate that sedimentation will be generally unchanged or reduced except on either side of the north island where increases can be expected. The areas experiencing unchanged or slightly reduced sedimentation rates include the oyster grounds, the Elizabeth River and Norfolk Harbor Channels, and the Newport News Channel. (fr)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号