首页> 美国政府科技报告 >Dispersion/Reaction Model of Aerosol Filtration by Porous Filters
【24h】

Dispersion/Reaction Model of Aerosol Filtration by Porous Filters

机译:多孔过滤器气溶胶过滤的分散/反应模型

获取原文

摘要

Filter efficiency is rigorously calculated without and hoc assumptions pertainingto aerosol distribution within the filter bed and even without the very concept of single-element efficiency. In particular, aerosol filtration processes are treated by formulating the particle transport problem at a pointwise (interstitial) level throughout the whole filter bed. These microscale processes ultimately govern aerosol transport and collection at the coarser Darcy scale. At the latter level of description the filter bed is viewed as a continuum in which aerosol propagation and deposition processes are characterized by three position-independent global phenomenological coefficients: the mean aerosol velocity vector, dispersivity dyadic and mean volumetric aerosol deposition rate coefficient. Calculation of these three global aerosol coefficients is effected via a rigorous application of Taylor-Aris convective dispersion theory to a lattice model of a porous filter bed. The filter efficiency is easily and explicitly expressed in terms of these three transport coefficients, thereby completely eliminating evaluation of the single-element efficiency as an intermediate step in the calculations. Circumstances are outlined in which the coarse-scale aerosol diffusivity may be neglected and the concomitant aerosol collection rate uniquely characterized by Leer's filtration length parameter. Reprints. (jhd)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号