首页> 美国政府科技报告 >Flow Past a Circular Cylinder with a Permeable Wake Splitter Plate
【24h】

Flow Past a Circular Cylinder with a Permeable Wake Splitter Plate

机译:通过带有可渗透的尾流分离板的圆形气缸的流动

获取原文

摘要

Measurements in the near wake region of a circular cylinder in a uniform flow inthe Reynolds number range 2.5 . 103 approx. < Re approx. < 1.8 . 104 With permeable splitter plates spanning the wake center plane are presented. Permeability is defined by the pressure drop across the plates, and the relationship between permeability and plate solidity is determined for a set of plates constructed from woven wire mesh, permitting unambiguous characterization of the splitter plates by the solidity. The effects of different solidities on the flow in the near wake are investigated using smoke wire flow visualization, hot-wire anemometry, and measurements of the mean pressure at the cylinder surface, and the results are related to cylinder flow without a splitter plate. Flow visualization results demonstrate that the introduction of low solidity splitter plates does not change the basic near wake structure, and that sufficiently high solidity uncouples the large-scale wake instability from the body, with the primary vortex formation occurring downstream of the separation bubble due to instability of the wake profile. Hot-wire and surface pressure measurements confirm and quantify the flow visualization results, showing that the permeable splitter plates reduce the drag and modify the primary wake frequency. When the solidity is high enough that the wake is convectively unstable, the base pressure is independent of the Reynolds number and solidity. For a wide range of solidities, the same asymptotic value of the Strouhal number is reached at high Reynolds numbers. The relationship between the Strouhal number and the base pressure is discussed. Bluff body, Circular cylinder, Separated flow, Near wake, Splitter plate.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号