首页> 美国政府科技报告 >Thermo-Mechanical Fatigue Behavior of Cross-Ply Ceramic Matrix CompositeUnderTension-Tension Loading
【24h】

Thermo-Mechanical Fatigue Behavior of Cross-Ply Ceramic Matrix CompositeUnderTension-Tension Loading

机译:张力 - 拉伸载荷下交叉铺层陶瓷基复合材料的热机械疲劳行为

获取原文

摘要

The purpose of this study was to investigate the combined effect of cyclictemperature and loading on the fatigue life of a ceramic matrix composite with a cross ply lay-up. The material used in this study was a potassium borosilicate glass (BSG) doped magnesium aluminosilicate (MAS) cordierite matrix reinforced with Nicalon (silicon carbide, SiC) fibers in a (O/90)4s lay-up. Thermomechanical fatigue (TMF) tests were performed with a period of 180 seconds/cycle, or 0.00556 Hz, and a triangular wave-form. The temperature was cycled between 566 C and l093 C, and the stress levels varied between 60 MPa and 145 MPa. All tests involved tension-tension cycling with a stress ratio of 0.1. These two temperatures and the stress ratio were chosen to correspond with previous studies on this material. Six tests were performed under in-phase TMF conditions, and five tests were performed out-of-phase TMF condition. Four fatigue tests were performed isothermally at 566 C, and three more at l093 C. Monotonic tests were also performed at room temperature, 566 C and 1093 C. Load and strain data were measured during all tests. This data was then used to get histories for maximum strain, minimum strain and strain range, modulus degradation, stress-strain hysteresis loops, and fatigue life curves. Post-mortem fractographic analysis, with optical and scanning electric microscopes, was also performed on the specimen. Damage and fracture mechanisms were thus determined. These results indicate a much higher damage for thermo-mechanical fatigue than for high temperature isothermal mechanical fatigue, with the out-of-phase TMF being much higher than the in-phase TMF. By comparing with previous data, it is shown that frequency has no effect, thus the damage is a time dependent phenomenon involving environmentally assisted crack growth and fiber-matrix debonding.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号