首页> 外军国防科技报告 >Large-Scale Influences on Atmospheric River–Induced Extreme Precipitation Events Along the Coast of Washington State
【2h】

Large-Scale Influences on Atmospheric River–Induced Extreme Precipitation Events Along the Coast of Washington State

机译:对华盛顿州沿岸大气河流诱发的极端降水事件的大规模影响

代理获取
代理获取并翻译 | 示例

摘要

Transient, narrow plumes of strong water vapor transport, referred to as Atmospheric Rivers (ARs) are responsible for much of the precipitation along the west coast of the United States. Along the coast of Oregon and Washington, the most intense cool season precipitation events are almost always induced by an AR and can result in detrimental impacts on society due to mudslides and flooding. It is therefore important to understand the large scale influence on extreme AR events so that they can be accurately predicted on timescales ranging from numerical weather prediction to seasonal forecasts. Here, characteristics of ARs that result in observed extreme precipitation events are compared to typical ARs on the coast of Washington State using data from the Modern Era Retrospective analysis for Research and Applications, Version 2. In addition to more intense water vapor transport, notable differences in the synoptic scale forcing are present during extreme precipitation events that are not present during typical AR events. In particular, an anomalously deep low pressure system is stationed to the west in the Gulf of Alaska, alongside a jet streak overhead. Attention will also be given to subseasonal and seasonal teleconnection patterns that are known to influence the weather in the Pacific Northwest of the United States. While little influence can be seen from the phase of the El Nino Southern Oscillation, Pacific Decadal Oscillation, and Pacific North American Pattern, the Madden Julian Oscillation (MJO) can play a role in determining the strength of precipitation associated with in AR on the Washington Coast. Lastly, interactions between the MJO and other teleconnection patterns will be explored to determine key features that should be investigated when making subseasonal predictions for AR activity and the associated precipitation in the Pacific Northwest.

著录项

  • 作者

  • 作者单位
  • 年(卷),期 2020(),
  • 年度 2020
  • 页码
  • 总页数 1
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 网站名称 NASA
  • 栏目名称 所有文件
  • 关键词

  • 入库时间 2022-08-19 17:43:56
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号