首页> 外军国防科技报告 >Low-Temperature Formation of a WO3 Thin Film by the Sol-Gel Method Using Photo-Irradiation and Fabrication of a Flexible Hydrogen Sensor
【2h】

Low-Temperature Formation of a WO3 Thin Film by the Sol-Gel Method Using Photo-Irradiation and Fabrication of a Flexible Hydrogen Sensor

机译:

代理获取
代理获取并翻译 | 示例

摘要

Hydrogen has been recently attracted much attention with respect to high energy-conversion efficiency and low environmental burden. However, hydrogen gas is dangerous due to an explosive gas and a fast combustion rate. Therefore, the development of hydrogen sensor with high accuracy and reliability that can detect hydrogen easily is required. Especially, a flexible hydrogen sensor is useful because it has a high degree of freedom with respect to the shape of location in which the sensor is to be located. A flexible hydrogen sensor—namely, a WO3 thin film formed on a PET film by the sol-gel method using photo irradiation—based on gasochromism of WO3 was developed. By irradiating a thin film, which was prepared by using WO3 precursor solution synthesized by the sol-gel method, with ultraviolet rays, a high-purity WO3 film could be prepared on PET at low temperature. The sensor was structured as a polystyrene (PS) film containing palladium (Pd) laminated on a WO3 film. The WO3 layer was porous, so the PS containing Pd atoms solution penetrated the WO3 layer. WO3 reacted with hydrogen gas and instantly turned blue as the transmittance of the WO3 layer changed. The sensor showed high reactivity even for hydrogen concentration below 4% (1%, 0.5%, 0.25%, and 0.1%), which was the lower limit of hydrogen ignition, and a linear relationship between hydrogen concentration and change in transmittance was found. Moreover, the resistance of the WO3 film significantly and instantaneously changed due to hydrogen-gas exposure, and the hydrogen concentration and resistance change showed a linear relationship. It is therefore possible to quantitatively detect low concentrations of hydrogen by using changes in transmittance and resistance as indices. Since these changes occur selectively under hydrogen at room temperature and normal pressure, they form the basis of a highly sensitive hydrogen sensor. Since the developed sensor is flexible, it has a high degree of freedom with respect to the shape of location in which the sensor is to be installed

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号