首页> 外文期刊>Photosynthesis Research: An International Journal >Construction of hybrid photosynthetic units using peripheral and core antennae from two different species of photosynthetic bacteria: detection of the energy transfer from bacteriochlorophyll a in LH2 to bacteriochlorophyll b in LH1
【24h】

Construction of hybrid photosynthetic units using peripheral and core antennae from two different species of photosynthetic bacteria: detection of the energy transfer from bacteriochlorophyll a in LH2 to bacteriochlorophyll b in LH1

机译:使用外围和核心触角从两种不同种类的光合细菌构建杂交光合作用单元:检测LH2中细菌叶绿素a到LH1中细菌叶绿素b的能量转移

获取原文
获取原文并翻译 | 示例
           

摘要

Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109-127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.
机译:典型的紫色细菌光合作用单元由外围(LH2)和核心(LH1-RC)天线复合物的超分子阵列组成。完整膜中光合作用单元的最新原子力显微镜照片显示,这些单元的结构是可变的(Scheuring等(2005)Biochim Bhiophys Acta 1712:109-127)。在这项研究中,我们描述了从纯化的LH2(得自嗜酸红假单胞菌)和LH1-RC(得自拟红假单胞菌)核心复合物混合物的脂质双层中构建异源光合作用单元的方法。这些重构的光合作用单元的结构可以通过控制添加的LH2与核心复合物的比例来改变。通过电子显微镜结合傅里叶分析使配合物的排列可视化。天然光合膜中可见的核心复合物的规则三角阵列可以通过温度循环在重构的膜中再生。在存在添加的LH2络合物的情况下,这种三角对称被正交斜对称所代替。后者的小晶格长度表明,正交晶格的组成单元是LH2。将荧光和荧光激发光谱应用于以不同比例的LH2与核心配合物制备的一组重组膜。值得注意的是,即使LH2配合物包含细菌叶绿素a,核心复合物包含细菌叶绿素b,也有可能证明能量从LH2转移到核心复合物。这些实验为研究紫色细菌光合作用单元的结构变化如何影响采光的整体效率提供了第一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号