首页> 外文期刊>Philosophical transactions of the Royal Society. Mathematical, physical, and engineering sciences >What CO2 well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere
【24h】

What CO2 well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere

机译:CO2井气体告诉我们有关地幔中稀有气体的起源及其与大气的关系

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Study of commercially produced volcanic CO2 gas associated with the Colorado Plateau, USA, has revealed substantial new information about the noble gas isotopic composition and elemental abundance pattern of the mantle. Combined with published data from mid-ocean ridge basalts, it is now clear that the convecting mantle has a maximum Ne-20/Ne-22 isotopic composition, indistinguishable from that attributed to solar wind-implanted (SWI) neon in meteorites. This is distinct from the higher Ne-20/Ne-22 isotopic value expected for solar nebula gases. The non-radiogenic xenon isotopic composition of the well gases shows that 20 per cent of the mantle Xe is 'solar-like' in origin, but cannot resolve the small isotopic difference between the trapped meteorite 'Q'- component and solar Xe. The mantle primordial Ne-20/Xe-132 is approximately 1400 and is comparable with the upper end of that observed in meteorites. Previous work using the terrestrial I-129 Xe-129 mass balance demands that almost 99 per cent of the Xe ( and therefore other noble gases) has been lost from the accreting solids and that Pu I closure age models have shown this to have occurred in the first ca 100 Ma of the Earth's history. The highest concentrations of Q-Xe and solar wind-implanted (SWI)-Ne measured in meteorites allow for this loss and these high-abundance samples have a Ne/Xe ratio range compatible with the 'recycled-aircorrected' terrestrial mantle. These observations do not support models in which the terrestrial mantle acquired its volatiles from the primary capture of solar nebula gases and, in turn, strongly suggest that the primary terrestrial atmosphere, before isotopic fractionation, is most probably derived from degassed trapped volatiles in accreting material. By contrast, the non-radiogenic argon, krypton and 80 per cent of the xenon in the convecting mantle have the same isotopic composition and elemental abundance pattern as that found in seawater with a small sedimentary Kr and Xe admix. These mantle heavy noble gases are dominated by recycling of air dissolved in seawater back into the mantle. Numerical simulations suggest that plumes sampling the core mantle boundary would be enriched in seawater-derived noble gases compared with the convecting mantle, and therefore have substantially lower Ar-40/Ar-36. This is compatible with observation. The subduction process is not a complete barrier to volatile return to the mantle.
机译:对与美国科罗拉多高原有关的商业生产的火山二氧化碳气体的研究表明,有关地幔中惰性气体同位素组成和元素丰度模式的大量新信息。结合来自洋中脊玄武岩的公开数据,现在很清楚,对流的地幔具有最大的Ne-20 / Ne-22同位素组成,与陨石中的太阳风注入氖(SWI)没有区别。这与预期的太阳星云气体较高的Ne-20 / Ne-22同位素值不同。井中气体的非放射性氙同位素组成表明,地幔中Xe的20%起源是“太阳能状”的,但不能解决被困的陨石“ Q”成分与太阳Xe之间的微小同位素差异。地幔原始的Ne-20 / Xe-132约为1400,与陨石中观测到的上端相当。以前使用地面I-129 Xe-129质量平衡进行的工作要求,从积聚的固体中损失了几乎99%的Xe(因此还有其他稀有气体),并且Pu I封闭年龄模型表明这种情况发生在地球历史上第一个约100 Ma。在陨石中测得的最高浓度的Q-Xe和太阳风注入(SWI)-Ne可以弥补这一损失,这些高丰度样品的Ne / Xe比范围与“循环空气校正”地幔兼容。这些观察结果不支持其中地幔是从太阳星云气体的一次捕获中获取其挥发物的模型,并且反过来强烈地表明,在进行同位素分级之前,主要的地球大气很可能是由吸积物质中的脱气捕集的挥发物衍生而来的。 。相比之下,对流地幔中的非放射性氩,k和80%的氙具有与海水中少量的Kr和Xe掺混物相同的同位素组成和元素丰度模式。这些地幔重的稀有气体主要是通过将溶解在海水中的空气再循环回地幔中来控制的。数值模拟表明,与对流地幔相比,对核心地幔边界进行取样的羽流将富含海水衍生的稀有气体,因此Ar-40 / Ar-36含量要低得多。这与观察兼容。俯冲过程并不是挥发性物质返回地幔的完整障碍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号