【24h】

Compressible viscous flow solver

机译:可压缩粘性流动求解器

获取原文
获取原文并翻译 | 示例
       

摘要

Nowadays, in spite of disadvantages of turbulence closure models for RANS (Reynolds Averaged Navier-Stokes equations), they are at present the only tools available for the computa-tion of complex turbulent flows of practical relevance. Their popularity comes from high efficiency in terms of accuracy and computational cost, which makes them widely used in commer-cial codes and related multidisciplinary applications. Hence, for modelling compressible flow, as a framework of complex in-verse design optimisation tool, Navier-Stokes solver is imple-mented by using k-co turbulence model in C++ environment. The governing equations in conservative form are deduced by using Favre averaging to filter local fluctuations. The code is based on structured, density based cell centred finite volume method. The convective terms are discretized by Roe approximated Riemann method. Central discretization is applied for diffusive terms. MUSCL approach is implemented for higher order spatial re-construction with Mulder limiter for monotonicity preserving. Wilcox k-ω two equations turbulence model is implemented for turbulence modelling. The explicit system of the equations is solved by the 4~(th) order Runge-Kutta method. The numerical boundary conditions are based on the method of characteris- tics. The interest is mostly in high speed aeronautical applica-tions with the possibility of extension for surface optimisation. Hence, the applied validational test cases are in transonic and supersonic flow regime: circular bump in the transonic channel and compression corner.
机译:如今,尽管存在RANS的湍流闭合模型(雷诺平均Navier-Stokes方程)的缺点,但它们目前是可用于计算具有实际意义的复杂湍流的唯一工具。它们的受欢迎程度来自于准确性和计算成本方面的高效率,这使其广泛用于商业代码和相关的多学科应用中。因此,为了建模可压缩流,作为复杂的逆向设计优化工具的框架,在C ++环境中通过使用k-co湍流模型来实现Navier-Stokes求解器。通过使用Favre平均来过滤局部波动,可以推导保守形式的控制方程。该代码基于结构化,基于密度的单元中心有限体积方法。对流项通过Roe近似Riemann方法离散化。中心离散适用于扩散项。 MUSCL方法通过Mulder限制器实现高阶空间重构,以保持单调性。 Wilcoxk-ω两个方程的湍流模型被实现用于湍流建模。方程的显式系统用4阶Runge-Kutta方法求解。数值边界条件基于特征方法。人们最感兴趣的是高速航空应用,并可能扩展表面优化。因此,应用的验证测试案例处于跨音速和超音速流动状态:跨音速通道中的圆形凸起和压缩角。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号