...
首页> 外文期刊>Palaios: An International Journal of the Society of Economic Paleontologists & Mineralogists >MICROBIAL BIOSIGNATURES IN IRON-MINERALIZED PHOTOTROPHIC MATS AT CHOCOLATE POTS HOT SPRINGS, YELLOWSTONE NATIONAL PARK, UNITED STATES
【24h】

MICROBIAL BIOSIGNATURES IN IRON-MINERALIZED PHOTOTROPHIC MATS AT CHOCOLATE POTS HOT SPRINGS, YELLOWSTONE NATIONAL PARK, UNITED STATES

机译:美国黄石国家公园巧克力矿点热泉铁矿化植物的微生物学特征

获取原文
获取原文并翻译 | 示例

摘要

The origin of oxidized iron in Precambrian iron formations has been debated for decades. Direct paleontological evidence for a microbial role in iron oxidation has been sought in the biosignatures in these structures. This study documents how several biosignatures of phototrophic iron-oxidizing communities form in modern hydrothermal iron deposits. The microbes, primary minerals, microfossils, and stromatolitic biofabrics from Chocolate Pots hot springs in Yellowstone National Park were characterized across a range of spatial scales via various types of microscopy, X-ray diffraction, energy dispersive spectroscopy, and total organic carbon elemental analyses. Electron microscopic examination of the cyanobacterial mats reveals the formation of distinct dendritic-like biofabrics. Early-stage iron-permineralized phototrophic microfossils display taxonomic features that allow identification to the genus level. Selected-area electron diffraction analysis indicates that cells were permineralized by iron oxides (2-line ferrihydrite). Although permineralization by silica is considered to result in fossils with the highest cellular fidelity, this investigation suggests that iron permineralization may also produce exceptionally well-preserved microfossils. Characterization of biosignatures in this modern high-iron thermal spring provides a unique opportunity to establish a link between (1) our previous physiological measurements of iron oxidation by a phototrophic community; (2) production of biosignatures by the community; and (3) survival of these biosignatures during the earliest stages of diagenesis in the iron oxides underneath the microbial mats. This fossil evidence linking taxonomy, physiology, and biosignatures may be used to infer the paleobiology and paleoecology of similar fossil benthic microbial communities and may provide a means to assess the microbial contribution to ancient iron deposits.
机译:寒武纪前铁构造中氧化铁的起源已有数十年的历史。已经在这些结构的生物特征中寻找了微生物在铁氧化中作用的直接古生物学证据。这项研究记录了在现代热液铁矿床中如何形成光养性铁氧化群落的几种生物特征。黄石国家公园Chocolate Pots温泉中的微生物,主要矿物,微化石和层状生物纤维通过各种类型的显微镜,X射线衍射,能量色散光谱和总有机碳元素分析,在一系列空间范围内得到表征。蓝藻垫的电子显微镜检查表明形成了独特的树突状生物纤维。早期铁矿化的光养微化石显示出分类学特征,可以鉴定到属水平。选定区域的电子衍射分析表明,细胞被氧化铁(2-线亚铁水合物)矿化。尽管二氧化硅的矿化作用被认为可以使化石具有最高的细胞保真度,但这项研究表明,铁的矿化作用还可能产生保存良好的微化石。在这个现代的高铁温泉中生物特征的表征提供了一个独特的机会,可以在以下两个方面建立联系:(1)我们先前通过光养群落对铁氧化的生理测量值; (2)社区生产生物签名; (3)在成岩作用的最早阶段,这些生物特征在微生物垫下面的氧化铁中的存活率。这种将生物分类学,生理学和生物特征联系起来的化石证据可用于推断相似的化石底栖微生物群落的古生物学和古生态,并可提供一种评估微生物对古代铁矿床贡献的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号