首页> 外文期刊>Soil Science Society of America Journal >Hierarchical, Bimodal Model for Gas Diffusivity in Aggregated, Unsaturated Soils
【24h】

Hierarchical, Bimodal Model for Gas Diffusivity in Aggregated, Unsaturated Soils

机译:聚集的非饱和土壤中气体扩散的分层双峰模型

获取原文
获取原文并翻译 | 示例
       

摘要

The soil gas diffusion coefficient (Dp) and its dependency on soil air content, epsilon, and tortuosityconnectivity of the air-filled pore networks control the transport and fate of gaseous-phase contaminants in variably saturated soil. The bimodality in pore size distribution of structured soil often yields a variation of Dp with epsilon in the intraaggregate pore region that is distinctly different from that in the interaggregate region. Data imply a highly nonlinear behavior of soil gas diffusivity, Dp(epsilon)/Do (where Do is the gas diffusion coefficient in free air), in the interaggregate region of aggregated soils similar to that of structureless soils with a unimodal pore size distribution, probably due to diffusion-limiting effects by connected water films at low epsilon. In contrast, for the intraaggregate region, we show that the impedance factor F* (= Dp/epsilonDo) and tortuosity factor T [= (1/F*)1/2] are approximately constant for most soil media. We suggest a typically well-defined separation between the two pore regions at the minimum for the pore connectivity factor X* [= log(Dp/Do)/log(epsilon)], at which point the interaggregate pores are devoid of water while the intraaggregate pore region is water saturated. Based on this, a hierarchical two independent region (TIR) Dp/Do model was developed by applying a cumulative series of BuckinghamCurrie power-law functions, FepsilonX. A nonlinear, water-content-dependent expression for F best described the measured Dp/Do in the interaggregate region, while constant F (around 0.5) and X (around 1) generally sufficed for the intraaggregate region. The TIR model better predicted gas diffusivities for both aggregate fractions and highly structured soils across the entire range of moisture conditions with RMSE reduced by two to five times compared with traditional predictive Dp(epsilon)/Do models.
机译:土壤气体扩散系数(Dp)及其对土壤空气含量,ε的依赖性以及充气孔隙网络的曲折连通性控制着气相污染物在饱和土壤中的迁移和结局。结构化土壤孔径分布的双峰性通常会导致聚集体内部孔隙区域中Dp与ε的变化,这与聚集体内部区域中的明显不同。数据表明,在聚集土壤的聚集区域中,土壤气体扩散率Dp(ε)/ Do(其中Do是自由空气中的气体扩散系数)具有高度非线性的行为,类似于具有单峰孔径分布的无结构土壤,可能是由于在低ε下连接的水膜的扩散限制效应。相反,对于骨料内部区域,我们表明,对于大多数土壤介质,阻抗系数F *(= Dp / epsilonDo)和曲折系数T [=(1 / F *)1/2]近似恒定。我们建议在两个孔区域之间以最小的孔隙连通性因子X * [= log(Dp / Do)/ log(epsilon)]进行典型定义明确的分离,此时,聚集的孔隙中不含水,而骨料内部的孔隙是水饱和的。在此基础上,通过应用累积的一系列BuckinghamCurrie幂律函数FepsilonX,开发了一个分层的两个独立区域(TIR)Dp / Do模型。 F的非线性,与水含量有关的表达式最能描述集聚区中测得的Dp / Do,而集聚区内的常数F(约0.5)和X(约1)通常就足够了。与传统的预测Dp(ε)/ Do模型相比,TIR模型可以更好地预测整个水分条件范围内聚集体组分和高度结构化土壤的气体扩散率,而RMSE降低了2至5倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号