...
首页> 外文期刊>journal of plant interactions >Molecular and biochemical mechanisms associated with differential responses to drought tolerance in wheat (Triticum aestivum L.)
【24h】

Molecular and biochemical mechanisms associated with differential responses to drought tolerance in wheat (Triticum aestivum L.)

机译:

获取原文
获取原文并翻译 | 示例

摘要

Drought stress is a common abiotic stress in wheat. In this study, PEG-induced drought stress caused significant decline in morpho-physiological characteristics in Bijoy but not in BG-25, suggesting that drought tolerance mechanisms exist in BG-25. Semi-quantitative RT-PCR (reverse transcriptase) revealed the upregulation of TaCRT1 (calreticulin Ca2+-binding protein) and DREB1A (dehydration responsive transcription factor) transcripts in drought-stressed roots of BG-25 and Bijoy, albeit to a lesser extent. These imply that increased TaCRT1 expression may be associated with the survival of the wheat plants under drought conditions. In addition, DREB1A suggests its involvement in gene regulation associated with drought tolerance. Higher antioxidant enzyme capacity (catalase, peroxidase and glutathione reductase) along with less MDA content in roots of BG-25 suggests that wheat tolerance to drought stress could be associated with higher oxidative scavenging ability. Finally, elevated S-metabolites (glutathio...

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号