...
首页> 外文期刊>Remote sensing in earth systems sciences >Mapping Tree Water Deficit with UAV Thermal Imaging and Meteorological Data
【24h】

Mapping Tree Water Deficit with UAV Thermal Imaging and Meteorological Data

机译:利用无人机热成像和气象数据绘制树木缺水图

获取原文
获取原文并翻译 | 示例

摘要

Abstract The mapping of forest stands and individual trees affected by drought stress is a crucial step in targeted forest management, aimed at fostering resilient and diverse forests. Unoccupied aerial vehicle (UAV)-based thermal sensing is a promising method for obtaining high-resolution thermal data. However, the reliability of typical low-cost sensors adapted for UAVs is compromised due to various factors, such as internal sensor dynamics and environmental variables, including solar radiation intensity, relative humidity, object emissivity and wind. Additionally, accurately assessing drought stress in trees is a complex task that usually requires laborious and cost-intensive methods, particularly in field settings. In this study, we investigated the feasibility of using the thermal band of the Micasense Altum multispectral sensor, while also assessing the potential for modelling tree water deficit (TWD) through point dendrometers and UAV-derived canopy temperature. Our indoor tests indicated that using a limited number of pixels (< 3) could result in temperature errors exceeding 1 K. However, enlarging the spot-size substantially reduced the mean difference to 0.02 K, validated against leaf temperature sensors. Interestingly, drought-treated (unwatered) leaves exhibited a higher root mean squared error (RMSE) (RMSE = 0.66 K and 0.73 K) than watered leaves (RMSE = 0.55 K and 0.53 K), likely due to lower emissivity of the dry leaves. Comparing field acquisition methods, the mean standard deviation (SD) for tree crown temperature obtained from typical gridded flights was 0.25 K with a maximum SD of 0.59 K (n = 12). In contrast, a close-range hovering method produced a mean SD of 0.09 K and a maximum SD of 0.1 K (n = 8). Modelling the TWD from meteorological and point dendrometer data for the 2021 growth season (n = 2928) yielded an R2 = 0.667 using a generalised additive model (GAM) with vapor pressure deficit (VPD), wind speed, and solar radiation as input features. A point dendrometer lag of one hour was also implemented. When predicting individual tree TWD with UAV-derived tree canopy temperature, relative humidity, and air temperature, an RMSE of 4.92 (μm) and R2 of 0.87 were achieved using a GAM. Implementing leaf-to-air pressure deficit (LVPD) as an input feature resulted in an RMSE of 6.87 (μm) and an R2 of 0.71. This novel single-shot approach demonstrates a promising method to acquire thermal data for the purpose of mapping TWD of beech trees on an individual basis. Further testing and development are imperative, and additional data from drought periods, point dendrometers, and high-resolution meteorological sources are required.
机译:摘要 对受干旱胁迫影响的林分和单株树木进行测绘是针对性森林管理的关键步骤,旨在培育具有韧性和多样性的森林。基于无人驾驶飞行器(UAV)的热传感是一种很有前途的高分辨率热数据获取方法。然而,由于各种因素,例如内部传感器动力学和环境变量,包括太阳辐射强度、相对湿度、物体发射率和风,适用于无人机的典型低成本传感器的可靠性受到损害。此外,准确评估树木的干旱胁迫是一项复杂的任务,通常需要费力且成本高昂的方法,尤其是在田间环境中。在这项研究中,我们研究了使用 Micasense Altum 多光谱传感器的热波段的可行性,同时还评估了通过点树密度计和无人机衍生的树冠温度模拟树木缺水 (TWD) 的潜力。我们的室内测试表明,使用有限数量的像素(< 3)可能会导致温度误差超过1 K。然而,扩大光斑尺寸可显著将平均差降低到0.02 K,并针对叶片温度传感器进行了验证。有趣的是,干旱处理(未浇水)的叶子表现出比浇水的叶子(RMSE = 0.55 K和0.53 K)更高的均方根误差(RMSE)(RMSE = 0.66 K和0.73 K),这可能是由于干燥叶子的发射率较低。比较现场采集方法,从典型网格飞行中获得的树冠温度的平均标准差(SD)为0.25 K,最大SD为0.59 K(n = 12)。相比之下,近距离悬停方法产生的平均 SD 为 0.09 K,最大 SD 为 0.1 K (n = 8)。根据 2021 年生长季节 (n = 2928) 的气象和点树木计数据对 TWD 进行建模,使用以蒸气压赤字 (VPD)、风速和太阳辐射为输入特征的广义加性模型 (GAM) 得出 R2 = 0.667。还实施了一小时的点树枝计滞后。当使用无人机衍生的树冠温度、相对湿度和空气温度预测单个树木 TWD 时,使用 GAM 实现了 4.92 (μm) 的 RMSE 和 0.87 的 R2。将叶-气压赤字 (LVPD) 作为输入特征,导致 RMSE 为 6.87 (μm),R2 为 0.71。这种新颖的单次方法展示了一种很有前途的获取热数据的方法,用于绘制山毛榉树的TWD图。进一步的测试和开发势在必行,并且需要来自干旱时期、点树木计和高分辨率气象源的额外数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号