...
首页> 外文期刊>Learning & memory >AMPA/kainate, NMDA, and dopamine D1 receptor function in the nucleus accumbens core: A context-limited role in the encoding and consolidation of instrumental memory
【24h】

AMPA/kainate, NMDA, and dopamine D1 receptor function in the nucleus accumbens core: A context-limited role in the encoding and consolidation of instrumental memory

机译:AMPA /海藻酸酯,NMDA和多巴胺D1受体在伏伏核核心中的功能:在仪器记忆的编码和整合中上下文受限的作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Neural integration of glutamate- and dopamine-coded signals within the nucleus accumbens (NAc) is a fundamental process governing cellular plasticity underlying reward-related learning. Intra-NAc core blockade of NMDA or D1 receptors in rats impairs instrumental learning (lever-pressing for sugar pellets), but it is not known during which phase of learning (acquisition or consolidation) these receptors are recruited, nor is it known what role AMPA/kainate receptors have in these processes. Here we show that pre-trial intra-NAc core administration of the NMDA, AMPA/KA, and D1 receptor antagonists AP-5 (1 mu g/0.5 mu L), LY293558 (0.01 or 0.1 mu g/0.5 mu L), and SCH23390 (1 mu g/0.5 mu L), respectively, impaired acquisition of a lever-pressing response, whereas post-trial administration left memory consolidation unaffected. An analysis of the microstructure of behavior while rats were under the influence of these drugs revealed that glutamatergic and dopaminergic signals contribute differentially to critical aspects of the initial, randomly emitted behaviors that enable reinforcement learning. Thus, glutamate and dopamine receptors are activated in a time-limited fashion-only being required while the animals are actively engaged in the learning context.
机译:伏伏核(NAc)内谷氨酸和多巴胺编码信号的神经整合是控制奖励相关学习基础的细胞可塑性的基本过程。大鼠体内NMDA或D1受体的NAc核心内阻滞作用会损害仪器学习(杠杆压制糖丸),但尚不清楚这些受体在学习的哪个阶段(获取或巩固)的过程,也不清楚其作用是什么AMPA /海藻酸酯受体参与这些过程。在这里,我们显示了NMDA,AMPA / KA和D1受体拮抗剂AP-5(1μg / 0.5μL),LY293558(0.01或0.1μg / 0.5μL), SCH23390和SCH23390(1μg/ 0.5μL)分别损害了杠杆按压反应的获得,而试验后的给药则不影响记忆巩固。对大鼠在这些药物作用下的行为的微观结构的分析显示,谷氨酸能和多巴胺能信号对初始随机发出的行为的关键方面有不同的贡献,从而能够进行强化学习。因此,仅在动物活跃地参与学习时才需要以时间限制的方式激活谷氨酸和多巴胺受体。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号