...
首页> 外文期刊>Laser Physics: An International Journal devoted to Theoretical and Experimental Laser Research and Application >Enhanced performance of an S-band fiber laser using a thulium-doped photonic crystal fiber
【24h】

Enhanced performance of an S-band fiber laser using a thulium-doped photonic crystal fiber

机译:使用掺ul光子晶体光纤的S波段光纤激光器的增强性能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This work proposes a new method to enhance the performance of an S-band fiber laser by using a thulium-doped photonic crystal fiber (PCF). The proposed method is based on amplified spontaneous emission (ASE) suppression provided by the thulium-doped PCF unique geometric structure. The enhanced performance of this filter based PCF is dependent on the short and long cut-off wavelength characteristics that define the fiber transmission window. Realizing the short wavelength cut-off location requires the PCF cladding to be doped with a high index material, which provides a refractive index difference between the core and cladding region. Achieving the long cut-off wavelength necessitates enlarging the size of the air holes surrounding the rare-earth doped core region. The PCF structure is optimized so as to achieve the desired ASE suppression regions of below 0.8 μm and above 1.8 μm. The laser performance is simulated for different host media, namely pure silica, alumino-silicate, and fluoride-based fiber ZBLAN based on this thulium-doped PCF design. The host media spectroscopic details, including lifetime variations and quantum efficiency effect on the lasing emission are also discussed. Information on the filter based PCF design is gathered via a full-vectorial finite element method analysis and specifically a numerical modelling solution for the energy level rate equation using the Runge–Kutta method. Results are analyzed for gain improvement, lasing cavity, laser efficiency and effect of core size diameter variation. Results are compared with conventional thulium-doped fiber and thuliumdoped PCF for every single host media. We observe that the ZBLAN host media is the most promising candidate due to its greater quantum efficiency.
机译:这项工作提出了一种通过使用掺by光子晶体光纤(PCF)来增强S波段光纤激光器性能的新方法。所提出的方法基于amplified掺杂PCF独特的几何结构提供的放大的自发发射(ASE)抑制。这种基于滤波器的PCF的增强性能取决于定义光纤传输窗口的短和长截止波长特性。要实现短波长截止位置,需要在PCF包层中掺入高折射率材料,从而在纤芯和包层区域之间提供折射率差。为了获得长的截止波长,必须增大稀土掺杂芯区域周围的气孔的尺寸。 PCF结构被优化以实现期望的低于0.8μm且高于1.8μm的ASE抑制区域。基于这种掺do的PCF设计,针对不同的宿主介质(即纯二氧化硅,硅铝酸盐和氟化物基光纤ZBLAN)模拟了激光性能。还讨论了主机介质的光谱学细节,包括寿命变化和量子效率对激光发射的影响。通过全矢量有限元方法分析,特别是使用Runge–Kutta方法的能级速率方程的数值建模解决方案,可以收集有关基于滤波器的PCF设计的信息。分析结果以改善增益,提高激光腔,提高激光效率以及改变磁芯尺寸直径的影响。将结果与传统的掺fiber光纤和掺PC PCF的每种宿主介质进行比较。我们观察到ZBLAN宿主介质由于其更高的量子效率而成为最有前途的候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号