首页> 外文期刊>microsystems & nanoengineering >Widely accessible method for 3D microflow mapping at high spatial and temporal resolutions
【24h】

Widely accessible method for 3D microflow mapping at high spatial and temporal resolutions

机译:在高空间和时间分辨率下进行 3D 微流测绘的广泛可访问方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Advances in microfluidic technologies rely on engineered 3D flow patterns to manipulate samples at the microscale. However, current methods for mapping flows only provide limited 3D and temporal resolutions or require highly specialized optical set-ups. Here, we present a simple defocusing approach based on brightfield microscopy and open-source software to map micro-flows in 3D at high spatial and temporal resolution. Our workflow is both integrated in ImageJ and modular. We track seed particles in 2D before classifying their Z-position using a reference library. We compare the performance of a traditional cross-correlation method and a deep learning model in performing the classification step. We validate our method on three highly relevant microfluidic examples: a channel step expansion and displacement structures as single-phase flow examples, and droplet microfluidics as a two-phase flow example. First, we elucidate how displacement structures efficiently shift large particles across streamlines. Second, we reveal novel recirculation structures and folding patterns in the internal flow of microfluidic droplets. Our simple and widely accessible brightfield technique generates high-resolution flow maps and it will address the increasing demand for controlling fluids at the microscale by supporting the efficient design of novel microfluidic structures.
机译:微流控技术的进步依赖于工程化的 3D 流动模式来在微观尺度上操纵样品。然而,目前的测绘流程方法只能提供有限的 3D 和时间分辨率,或者需要高度专业化的光学设置。在这里,我们提出了一种基于明场显微镜和开源软件的简单散焦方法,以高空间和时间分辨率绘制 3D 微流。我们的工作流程既集成在 ImageJ 中,又是模块化的。我们在使用参考库对种子颗粒的 Z 位置进行分类之前,先在 2D 中跟踪种子颗粒。我们比较了传统互相关方法和深度学习模型在执行分类步骤时的性能。我们在三个高度相关的微流体示例上验证了我们的方法:通道阶梯扩展和位移结构作为单相流示例,液滴微流体作为两相流示例。首先,我们阐明了置换结构如何有效地在流线上移动大粒子。其次,我们揭示了微流控液滴内部流动中新的再循环结构和折叠模式。我们简单且广泛使用的明场技术可生成高分辨率的流程图,它将通过支持新型微流体结构的高效设计来满足对微观尺度控制流体日益增长的需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号