...
首页> 外文期刊>Beni-Suef University Journal of Basic and Applied Sciences >Antisense oligonucleotides: recent progress in the treatment of various diseases
【24h】

Antisense oligonucleotides: recent progress in the treatment of various diseases

机译:

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Background: Antisense oligonucleotides are a promising novel class of therapeutic agents to treat different diseases in living things. They provide an efficient method for making target-selective agents because they change gene expression sequences. Therefore, the malfunctioning protein could be stopped, and the source of disease would be obliterated. The existing reviews of antisense oligonucleotides are focusing on discovery, development and concept. However, there is no review paper concerning the latest development of antisense oligonucleotides and their different therapeutic uses. Therefore, the present work has been targeting a comprehensive summary of newly synthesized antisense oligonucleotides and their biological activities. Main body: Antisense oligonucleotides are different from traditional therapeutic agents that are planned to interact with mRNA and modulate protein expression through a unique mechanism of action. In the last three decades, several researchers revealed the newer antisense oligonucleotides found with a high therapeutic profile due to more selective action on the drug target and thus producing a lesser side effect and low toxicity. This review emphasizes the research work on antisense oligonucleotides and their therapeutic activities. Short conclusion: With the support of the literature review, here we enlisted various antisense oligonucleotides that were prepared by appropriate technique and explored their pharmacological activities. To the best of our knowledge, it is the right time to consider the antisense oligonucleotides as a perfect choice of treatment for different diseases due to conceptual simplicity, more selective action, lesser side effects, low toxicity and permanent cure.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号