...
首页> 外文期刊>IEEE Transactions on Power Electronics >Grid Harmonic Current Correction Based on Parallel Three-Phase Shunt Active Power Filter
【24h】

Grid Harmonic Current Correction Based on Parallel Three-Phase Shunt Active Power Filter

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

This article presents a finite-set model predictive control (FS-MPC) applied to the shunt active power filters (SAPF) based on three-phase inverters connected in parallel sharing the same dc-link. The discrete-time model of the system is used to predict the future value of the grid, circulation, and offset currents. The presence of circulation and offset currents occurs due to the connection of the two inverters in parallel sharing the same dc-link. There are 64 switching state vectors for SAPF and, in order to reduce the burden of calculation, only 30 switching states are chosen and applied, however keeping the advantages of the FS-MPC algorithm. The control strategy ensures the sinusoidal shape of the grid current, high power factor, and circulating and offset currents suppression. The FS-MPC has its performance compared to the pulsewidth modulation (PWM) strategy considering the SAPF with two parallel inverters, the conventional SAPF and the neutral-point-clamped SAPF. These comparisons include harmonic distortion, power semiconductor losses, and analysis of dc-link capacitor losses. As a multilevel topology, the SAPF with two parallel inverters using FS-MPC present competitive efficiency and can be applied with a good performance in industrial and residential applications. Simulation results and a laboratory-scale experimental platform is used for corroborating the proposal.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号