...
首页> 外文期刊>Numerical Heat Transfer, Part B. Fundamentals: An International Journal of Computation and Methodology >Development of a moving and stationary mixed particle method for solving the incompressible navier-stokes equations at high reynolds numbers
【24h】

Development of a moving and stationary mixed particle method for solving the incompressible navier-stokes equations at high reynolds numbers

机译:开发用于求解高雷诺数不可压缩的Navier-stokes方程的动静混合粒子方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the current particle method, we propose a new semi-implicit particle method for more effectively solving the incompressible Navier-Stokes equations at a high Reynolds number. Within the Lagrangian framework, the convective terms in the equations of motion are eliminated, without the problem of convective numerical instability. Also, the crosswind diffusion error generated normally in the case of a large angle difference between the velocity vector and the coordinate line disappears. Only the Laplacian operator for the velocity components and the gradient operator for the pressure need to be approximated on the basis of particle interaction through the currently proposed kernel function. As the key to getting better predicted accuracy, the kernel function is derived subject to theoretical constraint conditions. In the conventional moving-particle method, it is almost impossible to get convergent solution at a high Reynolds number. To overcome this simulation difficulty so that the moving-particle method is applicable to a wider range of flow simulations, a new solution algorithm is proposed for solving the elliptic-parabolic set of partial differential equations. In the momentum equations, calculation of the velocity components is carried out in the particle-moving sense. Unlike the traditional moving-particle semi-implicit method, the pressure values are not calculated at the particle locations being advected along the flowfield. After updating the fluid particle locations within the Lagrangian framework, we interpolate the velocities at uniformly distributed pressure locations. In the current semi-implicit solution algorithm, pressure is governed by the elliptic differential equation with the source term being contributed entirely to the velocity gradient terms. The distribution of particle locations can become highly nonuniform in cases involving a high Reynolds number and under conditions having an apparently vortical flow. As a result, the elliptic nature of the pressure can be considerably destroyed in the course of Lagrangian motion. To retain the embedded ellipticity in the incompressible viscous flow equations, the Poisson equation adopted for the calculation of pressure is solved in a mathematically more plausible fixed uniform mesh so as to get not only fourth-order accuracy for the pressure but also to enhance ellipticity in the pressure Poisson equation. Moreover, the velocity-pressure coupling can be more enhanced in the semi-implicit solution algorithm. The proposed moving and stationary mixed particle semi-implicit solution algorithm and the particle kernel will be demonstrated to be suitable to simulate high-Reynolds number fluid flows by investigating the lid-driven cavity flow problem at Re = 100 and Re = 1,000. Besides the validation of the proposed semi-implicit particle method in the fixed domain, the broken-dam problem is also solved to demonstrate the ability of accurately capturing the time-evolving free surface using the proposed semi-implicit particle method.
机译:在当前的粒子方法中,我们提出了一种新的半隐式粒子方法,以更有效地求解高雷诺数下的不可压缩Navier-Stokes方程。在拉格朗日框架内,消除了运动方程中的对流项,而没有对流数值不稳定的问题。而且,在速度矢量和坐标线之间的角度差大的情况下通常产生的侧风扩散误差消失。通过当前提出的核函数,仅需要基于粒子相互作用对速度分量的拉普拉斯算子和对压力的梯度算子进行近似。作为获得更好的预测精度的关键,核函数的导出受制于理论约束条件。在传统的移动粒子方法中,几乎不可能获得高雷诺数的收敛解。为了克服这种模拟难题,使运动粒子方法适用于更广泛的流动模拟,提出了一种新的求解算法,用于求解偏微分方程的椭圆-抛物线组。在动量方程中,速度分量的计算是从质点运动的角度进行的。与传统的移动粒子半隐式方法不同,在沿流场平移的粒子位置不计算压力值。在拉格朗日框架内更新流体粒子位置之后,我们在均匀分布的压力位置上对速度进行插值。在当前的半隐式求解算法中,压力由椭圆微分方程控制,而源项完全贡献于速度梯度项。在涉及高雷诺数的情况下以及在具有明显涡流的条件下,颗粒位置的分布可能变得非常不均匀。结果,在拉格朗日运动的过程中,压力的椭圆特性会被大大破坏。为了在不可压缩的粘性流方程中保留嵌入的椭圆率,在数学上更合理的固定均匀网格中求解了用于计算压力的泊松方程,从而不仅获得了压力的四阶精度,而且还增强了椭圆率。压力泊松方程。此外,在半隐式求解算法中可以进一步增强速度-压力耦合。通过研究在Re = 100和Re = 1,000时盖子驱动的腔体流动问题,将证明所提出的运动和静止混合粒子半隐式求解算法和粒子核适合模拟高雷诺数流体流动。除了在固定域中对所提出的半隐含粒子方法进行验证之外,还解决了断坝问题,以证明使用所提出的半隐含粒子方法可以准确捕获随时间变化的自由表面的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号