...
首页> 外文期刊>Journal of Applied Physics >Thermal deformation noise in large optical systems
【24h】

Thermal deformation noise in large optical systems

机译:

获取原文
获取原文并翻译 | 示例

摘要

Future large space-based telescope systems require precise optical surface quality and wave-front stability. One source of noise for very large precise optical systems is ambient thermal energy which induces statistical fluctuations in the strain energy state of the structure. We broadly model such optical systems as bending energy dominated or membrane in-plane energy dominated and derive analytical expressions for the governing parameters that determine noise magnitude. It is shown that for bending-based systems thermal noise increases as aperture is increased and as bending stiffness is decreased, while for membrane mirror systems it is the in-plane pretension level that determines the noise magnitude. The analysis is extended to numerical finite element techniques to illustrate the effects on very general large damped structures where we address the form of equivalent thermal loading density required in modeling such distributed structures. Calculations show that temporal rms deformation noise on the order of a picometer or less can be expected for apertures up to about 10 m and therefore is probably not significant. For lightweight precision aperture systems greater than 10 m, thermal noise may need to be considered in the design.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号