首页> 外文期刊>Journal of Applied Physics >Dynamics of Tm-Ho energy transfer and deactivation of the ~(3)F_(4) low level of thulium in fluorozirconate glasses
【24h】

Dynamics of Tm-Ho energy transfer and deactivation of the ~(3)F_(4) low level of thulium in fluorozirconate glasses

机译:氟唆酸盐玻璃中~(3)F_(4)低水平铥的Tm-Ho能量转移和失活动力学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The mechanism involved in the Tm~(3+) (~(3)F_(4))→Ho~(3+) (~(5)I_(7)) energy transfer and Tm~(3+) (~(3)H_(4)), ~(3)H_(6))→Tm~(3+) (~(3)F_(4), ~(3)F_(4)) cross relaxation as a function of the donor and acceptor concentrations was investigated in Tm-Ho-codoped fluorozirconate glasses. The experimental transfer rates were determined for the Tm→Ho energy transfer from the best fit of the acceptor luminescence decay using an expression which takes into account the Inokuti-Hirayama model and localized donor-to-acceptor interaction solution. The original acceptor solution derived from the Inokuti-Hirayama model fits well the acceptor luminescence transient only for low-concentrated systems. The results showed that a fast excitation diffusion that occurs in a very short time (t<<γ~(-2)) reduces the mean distance between an excited donor (D~(*)) and the acceptor (A). A localized donor-to-acceptor interaction takes place, leading to an exponential decay of donors as an average of the microscopic rate equation solution of each D~(*)-A pair separated by distance R that contributes in addition to the Inokuti-Hirayama solution. The observation that the experimental transfer rates were always much bigger than the one predicted by the diffusion model, in which the energy transfer process is assisted by excitation migration among donors state, reinforces the existence of a fast excitation diffusion among donor ions before the energy transfer to acceptor already observed in Yb:Er:ZBLAN. The fast excitation diffusion effect was observed to dominate both the Tm→Tm cross relaxation and Tm→Ho energy transfer ions from ~(3)H_(4) and ~(3)F_(4) thulium states, respectively.
机译:在Tm-Ho掺杂的氟环糖玻璃中研究了Tm~(3+) (~(3)F_(4))→Ho~(3+) (~(3+) (~(5)I_(7))能量转移和Tm~(3+) (~(3)H_(4)), ~(3)H_(6))→Tm~(3+) (~(3)F_(4), ~(3)F_(4)) 交叉弛豫作为供体和受体浓度函数的机制。使用考虑 Inokuti-Hirayama 模型和局部供体-受体相互作用解的表达式,从受体发光衰减的最佳拟合中确定 Tm→Ho 能量转移的实验转移速率。源自 Inokuti-Hirayama 模型的原始受体溶液非常适合仅适用于低浓度系统的受体发光瞬态。结果表明,在极短的时间内(t<<γ~(-2))发生的快速激发扩散降低了激发供体(D~(*))和受体(A)之间的平均距离。发生局部供体-受体相互作用,导致供体的指数衰减,作为每个 D~(*)-A 对的微观速率方程解的平均值,该对由距离 R 分隔,除了 Inokuti-Hirayama 解之外。实验转移速率总是比扩散模型预测的速率大得多,其中能量转移过程由供体状态之间的激发迁移辅助,这加强了在Yb:Er:ZBLAN中已经观察到的能量转移到受体之前供体离子之间快速激发扩散的存在。观察到快速激发扩散效应分别主导了~(3)H_(4)和~(3)F_(4)铥态的Tm→Tm交叉弛豫和Tm→Ho能量转移离子。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号