首页> 外文期刊>Materials science & engineering, C. Materials for Biogical applications >Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating
【24h】

Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating

机译:通过溶胶-凝胶衍生的纳米羟基磷灰石涂层控制AZ91镁合金的降解速率

获取原文
获取原文并翻译 | 示例
           

摘要

Magnesium (Mg) alloys have been introduced as new generation of biodegradable orthopedic materials in recent years since it has been proved that Mg is one of the main minerals required for osseous tissue revival. The main goal of the present study was to establish a desired harmony between the necessities of orthopedic patient body to Mg~(2+) ions and degradation rate of the Mg based implants as a new class of biodegradable/bioresorbable materials. This prospect was followed by providing a sol-gel derived nanostructured hydroxyapatite (n-HAp) coating on AZ91 alloy using dip coating technique. Phase structural analysis, morphology study, microstructure characterization, and functional group identification were performed using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The prepared samples were immersed in simulated body fluid in order to study the formation of apatite-like precipitations, barricade properties of the n-HAp coating, and to estimate the dosage of released Mg~(2+) ions within a specified and limited time of implantation. Electrochemical polarization tests were carried out to evaluate and compare the corrosion behavior of the n-HAp coated and uncoated samples. The changes of the in vitro pH values were also evaluated. Results posed the noticeable capability of n-HAp coating on stabilizing alkalization behavior and improving the corrosion resistance of AZ91 alloy. It was concluded that n-HAp coated AZ91 alloy could be a good candidate as a type of biodegradable implant material for biomedical applications.
机译:近年来,由于已证明镁是骨组织再生所需的主要矿物质之一,因此镁(Mg)合金已被引入作为新一代可生物降解的骨科材料。本研究的主要目标是在骨科患者身体对Mg〜(2+)离子的需要与作为新型一类可生物降解/可生物吸收材料的Mg基植入物的降解速率之间建立理想的和谐。通过使用浸涂技术在AZ91合金上提供溶胶-凝胶衍生的纳米结构羟基磷灰石(n-HAp)涂层,从而达到了这一前景。使用X射线衍射(XRD),傅立叶变换红外(FTIR),扫描电子显微镜(SEM)和透射电子显微镜(TEM)技术进行了相结构分析,形态学研究,微观结构表征和官能团鉴定。将制备的样品浸入模拟体液中,以研究磷灰石样沉淀物的形成,n-HAp涂层的路障性能,并估计在规定的有限时间内释放的Mg〜(2+)离子的剂量植入。进行了电化学极化测试,以评估和比较n-HAp涂层和未涂层​​样品的腐蚀行为。还评估了体外pH值的变化。结果表明,n-HAp涂层具有稳定碱化行为和改善AZ91合金耐蚀性的显着能力。结论是,n-HAp涂层的AZ91合金可以作为一种可生物降解的植入材料用于生物医学应用,是一种很好的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号