...
首页> 外文期刊>miskolc mathematical notes >GLOBAL STABILITY AND BIFURCATION ANALYSIS OF A DISCRETE TIME SIR EPIDEMIC MODEL
【24h】

GLOBAL STABILITY AND BIFURCATION ANALYSIS OF A DISCRETE TIME SIR EPIDEMIC MODEL

机译:

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, we study the complex dynamical behaviors of a discrete-time SIR epidemic model. Analysis of the model demonstrates that the Diseases Free Equilibrium (DFE) point is globally asymptotically stable if the basic reproduction number is less than one while the Endemic Equilibrium (EE) point is globally asymptotically stable if the basic reproduction number is greater than one. The results are further substantiated visually with numerical simulations. Furthermore, numerical results demonstrate that the discrete model has more complex dynamical behaviors including multiple periodic orbits, quasi-periodic orbits and chaotic behaviors. The maximum Lyapunov exponent and chaotic attractors also confirm the chaotic dynamical behaviors of the model.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号