首页> 外文期刊>journal of biomechanical science and engineering >Cerebellar foliation via non-uniform cell accumulation caused by fiber-guided migration of granular cells
【24h】

Cerebellar foliation via non-uniform cell accumulation caused by fiber-guided migration of granular cells

机译:由纤维引导的颗粒细胞迁移引起的不均匀细胞积累引起的小脑叶状

获取原文
获取外文期刊封面目录资料

摘要

© 2021 The Japan Society of Mechanical Engineers. All Rights Reserved.The cerebellum has a unique morphology characterized by fine folds called folia. During cerebellar morphogenesis, folia formation (foliation) proceeds with granule cell (GC) proliferation in an external granular layer, and subsequent cell migration to an internal granular layer (IGL). GC migration is guided along Bergmann glial (BG) fibers, whose orientation depends on the deformation of cerebellar tissue during folia formation. The aim of this study is to investigate the contribution of the fiber-guided GC migration on folia formation from a mechanical viewpoint. Based on a continuum mechanics model of cerebellar tissue deformation and GC dynamics, we simulated foliation process caused by GC proliferation and migration. By changing migration speeds, we showed that the fiber-guided GC migration caused the non-uniform accumulation of GCs and folia lengthening. Furthermore, the simulation of impaired GC migration under pathological conditions, where GCs did not migrate along BG fibers, revealed that fiber-guided GC migration was necessary for folia lengthening. These simulation results successfully recapitulated the features of physiological and pathological foliation processes and validated the mechanisms that guidance of GC migration by BG fibers causes folia lengthening accompanied by non-uniform IGL. Our computational approach will help us understand biological and physical morphogenesis mechanisms, facilitated by interactions between cellular activities and tissue behaviors.
机译:© 2021 日本机械工程师学会。小脑具有独特的形态,其特征是称为叶子的细褶皱。在小脑形态发生过程中,叶形成(叶状)在外部颗粒层中随着颗粒细胞 (GC) 增殖而进行,随后细胞迁移到内部颗粒层 (IGL)。GC 迁移沿着 Bergmann 神经胶质 (BG) 纤维引导,其方向取决于叶形成过程中小脑组织的变形。本研究的目的是从力学角度研究纤维引导的GC迁移对叶形成的贡献。基于小脑组织变形和GC动力学的连续力学模型,模拟了GC增殖和迁移引起的叶状过程。通过改变迁移速度,我们发现纤维引导的GC迁移导致了GCs的不均匀积累和叶片延长。此外,在病理条件下,GC不沿BG纤维迁移的GC迁移受损的模拟表明,纤维引导的GC迁移对于叶的延长是必要的。这些模拟结果成功地概括了生理和病理叶化过程的特征,并验证了BG纤维引导GC迁移导致叶层延长并伴有IGL不均匀的机制。我们的计算方法将帮助我们理解生物和物理形态发生机制,这些机制由细胞活动和组织行为之间的相互作用促进。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号