...
首页> 外文期刊>journal of biomechanical science and engineering >Enhancement of nerve axonal extension by an AC magnetic field stimulation bio-reactor using three-dimensional culture
【24h】

Enhancement of nerve axonal extension by an AC magnetic field stimulation bio-reactor using three-dimensional culture

机译:

获取原文

摘要

© 2019 The Japan Society of Mechanical Engineers.In this study, we designed and fabricated an AC magnetic field (ACMF) stimulation bio-reactor for a threedimensional (3D) culture of nerve cells using a collagen gel as a scaffold. Recently, the use of electromagnetic stimulation to enhance nerve axonal extension has attracted significant attention in nerve regeneration. Thus, we designed a novel 3D bio-reactor that can apply ACMF stimulation to nerve cells with a uniform magnetic flux density. We evaluated the morphology of PC12 cells and primary cells derived from the rat cerebral cortex using a multi photon microscope (MPM) and evaluated the effect of ACMF stimulation on axogenesis and nerve axonal extension. First, an ACMF stimulation bio-reactor was designed using a pole-piece structure. We examined the uniformity of the magnetic flux density generated in the 3D culture region of the bio-reactor using the 3D electromagnetic field finite element analyses. Second, we evaluated the effect of ACMF stimulation in enhancing PC12 cells axonal extension. Cells were disseminated into a collagen gel which was poured into a fabricated culture dish. We observed an increase in the axogenesis ratio and axonal extension length of PC12 cells during the later growth stages under ACMF stimulation. Finally, we confirmed that primary cells with enhanced axonal extension became more susceptible to ACMF stimulation as the intercellular distance increased.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号