...
首页> 外文期刊>Space weather >Shock Connectivity and the Late Cycle 24 Solar Energetic Particle Events in July and September 2017
【24h】

Shock Connectivity and the Late Cycle 24 Solar Energetic Particle Events in July and September 2017

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

As solar activity steadily declined toward the cycle 24 minimum in the early months of 2017, the expectation for major solar energetic particle (SEP) events diminished with the sunspot number. It was thus surprising (though not unprecedented) when a new, potentially significant active region rotated around the East limb in early July that by midmonth was producing a series of coronal eruptions, reaching a crescendo around 23 July. This series, apparently associated with the birth of a growing pseudostreamer, produced the largest SEP event(s) seen since the solar maximum years. Activity abated with the decay of the active region, but a second episode of magnetic flux emergence in the same area in early September initiated a new round of eruptions. The western longitude of the erupting region, together with its similar coronal setting in both cases, resulted in a set of nearly homologous multipoint SEP event periods at Earth, Solar TErrestrial RElations Observatory-A and Mars (Mars Atmosphere and Volatile EvolutioN) for July and September 2017. We use a combination of WSA-ENLIL-cone heliospheric simulation results, together with SEPMOD SEP event modeling, to illustrate how the event similarities at the three observer sites can be understood from their relative positions and their connectivities to the generated interplanetary shocks.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号