首页> 外文期刊>journal of biomechanical science and engineering >A six-degree-of-freedom proportional-derivative control strategy for bumblebee flight stabilization
【24h】

A six-degree-of-freedom proportional-derivative control strategy for bumblebee flight stabilization

机译:一种用于大黄蜂飞行稳定的六自由度比例导数控制策略

获取原文
获取外文期刊封面目录资料

摘要

© 2021. The Japan Society of Mechanical Engineers. This is an open access article under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/).Flying insects perform active flight control with flapping wings by continuously adjusting their wing kinematics in stabilizing the body posture to stay aloft under complex natural environment. While the Proportional Derivative (PD) / Proportional Integral Derivative (PID)-based algorithms have been applied to examine specific single degree of freedom (DoF) and/or 3 DoF flight control associated with insect flights, a full 6 DoF flight control strategy remains yet poorly studied. Here we propose a novel 6 DoF PD controller specified for flight stabilization in flapping flights, in which proportional and derivative gains are optimized to facilitate a fast while precise flight control by combing Laplace transformation and root locus method. The vertical position, yaw, pitch and roll are directly stabilized by tuning the wing kinematics while the forward/backward position and lateral position are indirectly stabilized by controlling the pitch and roll, respectively. Coupled with a recently developed flight dynamic model informed by high-fidelity CFD simulation (Cai et al. 2021), this methodology is proven to be effective as a versatile and efficient tool to achieve fast flight stabilization under both small and large perturbations for bumblebee hovering. The 6 DoF PD flight control strategy proposed may provide a useful bioinspired flight-controller design for flapping-wing micro air vehicles (FWMAVs).
机译:© 2021.日本机械工程师学会。这是一篇根据知识共享署名 4.0 国际许可 (https://creativecommons.org/licenses/by/4.0/) 条款的开放获取文章。飞虫通过不断调整翅膀运动学来稳定身体姿势,在复杂的自然环境中保持高空,从而通过拍打翅膀进行主动飞行控制。虽然基于比例微分 (PD) / 比例积分微分 (PID) 的算法已被应用于检查与昆虫飞行相关的特定单自由度 (DoF) 和/或 3 自由度飞行控制,但完整的 6 自由度飞行控制策略仍未得到充分研究。本文提出了一种新型的6 DoF PD控制器,用于扑翼飞行中的飞行稳定,其中通过结合拉普拉斯变换和根轨迹方法,优化了比例和导数增益,以促进快速而精确的飞行控制。垂直位置、偏航、俯仰和横滚通过调整机翼运动学直接稳定,而向前/后退位置和横向位置分别通过控制俯仰和横滚间接稳定。结合最近开发的基于高保真 CFD 模拟的飞行动力学模型(Cai 等人,2021 年),这种方法被证明是一种有效的多功能和高效工具,可以在大黄蜂悬停的小扰动和大扰动下实现快速飞行稳定。所提出的6自由度PD飞行控制策略可能为扑翼微型飞行器(FWMAV)提供有用的仿生飞行控制器设计。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号