...
首页> 外文期刊>Biological psychiatry >Excitatory/Inhibitory Imbalance Underlies Hippocampal Atrophy in Individuals With 22q11.2 Deletion Syndrome With Psychotic Symptoms
【24h】

Excitatory/Inhibitory Imbalance Underlies Hippocampal Atrophy in Individuals With 22q11.2 Deletion Syndrome With Psychotic Symptoms

机译:

获取原文
获取原文并翻译 | 示例

摘要

? 2023 Society of Biological PsychiatryBackground: Abnormal neurotransmitter levels have been reported in individuals at high risk for schizophrenia, leading to a shift in the excitatory/inhibitory balance. However, it is unclear whether these alterations predate the onset of clinically relevant symptoms. Our aim was to explore in vivo measures of excitatory/inhibitory balance in 22q11.2 deletion carriers, a population at genetic risk for psychosis. Methods: Glx (glutamate+glutamine) and GABA+ (gamma-aminobutyric acid with macromolecules and homocarnosine) concentrations were estimated in the anterior cingulate cortex, superior temporal cortex, and hippocampus using the Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) sequence and the Gannet toolbox in 52 deletion carriers and 42 control participants. T1-weighted images were acquired longitudinally and processed with FreeSurfer version 6 to extract hippocampal volume. Subgroup analyses were conducted in deletion carriers with psychotic symptoms. Results: While no differences were found in the anterior cingulate cortex, deletion carriers had higher levels of Glx in the hippocampus and superior temporal cortex and lower levels of GABA+ in the hippocampus than control participants. We additionally found a higher Glx concentration in the hippocampus of deletion carriers with psychotic symptoms. Finally, more pronounced hippocampal atrophy was significantly associated with increased Glx levels in deletion carriers. Conclusions: We provide evidence for an excitatory/inhibitory imbalance in temporal brain structures of deletion carriers, with a further hippocampal Glx increase in individuals with psychotic symptoms that was associated with hippocampal atrophy. These results are in line with theories proposing abnormally enhanced glutamate levels as a mechanistic explanation for hippocampal atrophy via excitotoxicity. Our results highlight a central role of glutamate in the hippocampus of individuals at genetic risk for schizophrenia.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号